
Logic as Loss: Overview

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

1

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

2

𝜃!

𝑥!

𝑦!

This network takes inputs 𝑋!
and produces a distribution
over labels 𝑌!

Its architecture and
parameters are defined by 𝜃!

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

3

𝜃!

𝑥!

𝑦!

𝜃"

𝑥"

𝑦"

This network takes inputs 𝑋"
and produces a distribution
over labels 𝑌"

Its architecture and
parameters are defined by 𝜃"

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

4

𝜃!

𝑥!

𝑦!

𝜃"

𝑥"

𝑦"

𝜃#

𝑥#

𝑦#

⋯
This network takes inputs 𝑋#
and produces a distribution
over labels 𝑌#

Its architecture and
parameters are defined by 𝜃#

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

5

Important:
These 𝑛 different networks and their inputs/outputs need not be different

• Maybe they are the same model called on different inputs
• Maybe they are different models given to the same network
• Or other combinations

What we have are 𝑛 different conditional distributions over outputs given inputs

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

6

How do we train these networks on their respective datasets?

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

7

How do we train these networks on their respective datasets?

One answer: Minimize cross-entropy loss over the data

The loss penalizes models that assign low probabilities to observed data

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

8

Recall that we can write classification tasks as predicates

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

9

Recall that we can
write classification
tasks as predicates

Assign label 𝑦! to 𝑥!

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

10

Recall that we can
write classification
tasks as predicates

Assign label 𝑦! to 𝑥!

Label(𝑋!, 𝑌!)	

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

11

Recall that we can
write classification
tasks as predicates

Assign label 𝑦! to 𝑥! Assign label 𝑦" to 𝑥"

Label(𝑋!, 𝑌!)	

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

12

Recall that we can
write classification
tasks as predicates

Assign label 𝑦! to 𝑥! Assign label 𝑦" to 𝑥"

Label(𝑋!, 𝑌!)	 Label(𝑋", 𝑌")	

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

13

Recall that we can
write classification
tasks as predicates

Assign label 𝑦! to 𝑥! Assign label 𝑦" to 𝑥" Assign label 𝑦# to 𝑥#

Label(𝑋!, 𝑌!)	 Label(𝑋", 𝑌")	

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

𝑃 𝑦! 𝑥!, 𝜃! , 𝑃 𝑦" 𝑥", 𝜃" , ⋯ , 𝑃 𝑦# 𝑥# , 𝜃#

14

Recall that we can
write classification
tasks as predicates

Assign label 𝑦! to 𝑥! Assign label 𝑦" to 𝑥" Assign label 𝑦# to 𝑥#

Label(𝑋!, 𝑌!)	 Label(𝑋", 𝑌")	 Label(𝑋#, 𝑌#)	

Logic as loss: The setting

Suppose we would like to train one or more neural networks on some data
Each of them can take different kinds of inputs to produce their own discrete outputs

Corresponding to the networks, we have predicates that serve as a
vocabulary for rules

Suppose we want our models to satisfy some invariant property that is written in
terms of these predicates in addition to modeling the data

How do we proceed?

15

The idea of the “logic as loss” framework

16

What we want of our models

Fit the available
training data

The idea of the “logic as loss” framework

17

What we want of our models

Fit the available
training data

Data loss
(e.g. cross entropy)Minimize

The idea of the “logic as loss” framework

18

What we want of our models

Fit the available
training data

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

The idea of the “logic as loss” framework

19

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

The idea of the “logic as loss” framework

20

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

Constraint loss

The idea of the “logic as loss” framework

21

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

Constraint loss

penalty for
violating constraints

The idea of the “logic as loss” framework

22

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

+ Constraint loss

penalty for
violating constraints

The idea of the “logic as loss” framework

23

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

+ Constraint loss

penalty for
violating constraints

The intuition
We want to find models that maximally
satisfy the constraints

If the constraint losses are well defined to
capture the logic, models that violate
constraints will have higher loss

So it is better to minimize the constraint loss

Labeled examples are also predicates about examples

Suppose we have a labeled example in a dataset (𝑥., 𝑦.)

We can write this as a predicate: Label(𝑥., 𝑦.)
This is the statement “The label for example 𝑥. is 𝑦.”.

24

Labeled examples are also predicates about examples

Suppose we have a labeled example in a dataset (𝑥., 𝑦.)

We can write this as a predicate: Label(𝑥., 𝑦.)
This is the statement “The label for example 𝑥. is 𝑦.”.

A dataset is nothing but a collection of examples of the form { 𝑥., 𝑦. , 𝑥/, 𝑦/ , … , 𝑥0, 𝑦0 }

This is equivalent to the conjunction

.
12.

0

Label(𝑥1 , 𝑦1)

25

Labeled examples are also predicates about examples

Suppose we have a labeled example in a dataset (𝑥., 𝑦.)

We can write this as a predicate: Label(𝑥., 𝑦.)
This is the statement “The label for example 𝑥. is 𝑦.”.

A dataset is nothing but a collection of examples of the form { 𝑥., 𝑦. , 𝑥/, 𝑦/ , … , 𝑥0, 𝑦0 }

This is equivalent to the conjunction

.
12.

0

Label(𝑥1 , 𝑦1)

26

Can we fold this into the framework?

The idea of the “logic as loss” framework

27

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

+ Constraint loss

penalty for
violating constraints

This is a specific
set of constraints

The idea of the “logic as loss” framework

28

What we want of our models

Fit the available
training data

Satisfy invariant properties
about predictionsand

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

+ Constraint loss

penalty for
violating constraints

This is a specific
set of constraints

Let us fold them into one term

The idea of the “logic as loss” framework

29

What we want of our models

Data loss
(e.g. cross entropy)Minimize

penalty for
disagreeing with data

+ Constraint loss

penalty for
violating constraints

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

The idea of the “logic as loss” framework

30

What we want of our models

penalty for violating constraints

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

The idea of the “logic as loss” framework

31

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#

Let us formally state the setting

The idea of the “logic as loss” framework

32

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#

Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model
Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Let us formally state the setting

The idea of the “logic as loss” framework

33

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#

Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model
Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝑝) such that minimizing it produces a model (and associated probabilities)
that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

34

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

35

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

36

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

37

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

38

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

39

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

40

Operationalizing “logic-as-loss”

How do we convert constraints into logic?
– Different approaches exist. We will look at two: semantic loss and t-norm losses

Can we recover standard data losses (e.g. cross entropy) from them?
– For both the above approaches, yes.

Do we need to change anything in the network architectures? Can we use any architectures?
– No. The only thing that changes is the loss function we are minimizing. We can use any network architecture

and any optimizer

A technical point: If our constraints are universally quantified over all possible inputs, do we
compute a loss over infinite terms?

– Often in practice, we will instantiate the constraint to a finite set of examples (possibly and often unlabeled)

41

Summary

The main idea:
– Convert constraints in symbolic logic to loss functions
– Minimize the logic-based loss
– Use any network architecture and any optimizer
– At inference time, there is no change in how we use our networks

The hope: By minimizing constraint violations, our resulting models will also satisfy
constraints in future examples

Coming up: Two instantiations of constraint loss
1. Semantic loss
2. T-norm losses

42

