
Logic-based Architectures

Neuro-symbolic modeling

What we have seen so far: Logic to design loss functions

Most neural networks are opaque and the only interfaces we have are at the inputs and
outputs

This means that most constraints will also about them

Can we write loss functions about the outputs that encourage the model to satisfy the
constraints? Each constraint will be mapped to its own loss

We can then use any learning algorithm/optimizer

1

This lecture: Logic to design networks

Suppose we have a neural network and a constraint that involves a few
nodes in the network

Can we somehow re-architect the network so that the resulting
architecture (by construction) satisfies the constraint? Or almost satisfies
the constraint?

2

Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic

3

Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic

4

Can we represent a logical statement as a neural network?

5

Can we represent a logical statement as a neural network?

Example 1: Consider the function
𝑓! = 𝑋! ∧ 𝑋"

6

Can we represent a logical statement as a neural network?

Example 1: Consider the function
𝑓! = 𝑋! ∧ 𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" ≥ 2

7

Easy to verify this.

The function is true if, and only if, both the variables are set
to true. That is, the number of true’s (i.e. ones) in the
summation is at least two

Can we represent a logical statement as a neural network?

Example 1: Consider the function
𝑓! = 𝑋! ∧ 𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" ≥ 2

And linear threshold units are one layer networks with a threshold activation
𝑓! = sgn 𝑋! + 𝑋" − 2

8

Can we represent a logical statement as a neural network?

Example 2: Consider the function
𝑓" = 𝑋! ∧ ¬𝑋"

9

Can we represent a logical statement as a neural network?

Example 2: Consider the function
𝑓" = 𝑋! ∧ ¬𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 1 − 𝑋" ≥ 2
That is, 𝑋! − 𝑋" ≥ 1

10

Can we represent a logical statement as a neural network?

Example 2: Consider the function
𝑓" = 𝑋! ∧ ¬𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 1 − 𝑋" ≥ 2
That is, 𝑋! − 𝑋" ≥ 1

And linear threshold units are one layer networks with a threshold activation
𝑓" = sgn 𝑋! − 𝑋" − 1

11

Can we represent a logical statement as a neural network?

Example 3: Consider the function
𝑓# = 𝑋! ∨ 𝑋" ∨ 𝑋# ∨ 𝑋$

12

Can we represent a logical statement as a neural network?

Example 3: Consider the function
𝑓# = 𝑋! ∨ 𝑋" ∨ 𝑋# ∨ 𝑋$

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" + 𝑋# + 𝑋$ ≥ 1

13

Can we represent a logical statement as a neural network?

Example 3: Consider the function
𝑓# = 𝑋! ∨ 𝑋" ∨ 𝑋# ∨ 𝑋$

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" + 𝑋# + 𝑋$ ≥ 1

And linear threshold units are one layer networks with a threshold activation

𝑓# = sgn /𝑋% − 1

14

Can we represent a logical statement as a neural network?

Example 4: Consider the function
𝑓$ = 𝑋! → 𝑋" ≡ ¬𝑋! ∨ 𝑋"

15

Can we represent a logical statement as a neural network?

Example 4: Consider the function
𝑓$ = 𝑋! → 𝑋" ≡ ¬𝑋! ∨ 𝑋"

This function is equivalent to the linear threshold unit 1 − 𝑋! + 𝑋" ≥ 1
That is, −𝑋! + 𝑋" ≥ 0

16

Can we represent a logical statement as a neural network?

Example 4: Consider the function
𝑓$ = 𝑋! → 𝑋" ≡ ¬𝑋! ∨ 𝑋"

This function is equivalent to the linear threshold unit 1 − 𝑋! + 𝑋" ≥ 1
That is, −𝑋! + 𝑋" ≥ 0

And linear threshold units are one layer networks with a threshold activation
𝑓$ = sgn −𝑋! + 𝑋"

17

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

18

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

19

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

20

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

21

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

22

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

23

Literals that have
positive polarity
(i.e., not negated)

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1

24

Literals that have
positive polarity
(i.e., not negated)

Literals that have
positive polarity
(i.e., not negated)

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∧ 𝑙" ∧ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ number	of	variables

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# − 𝑃

25

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∧ 𝑙" ∧ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ number	of	variables

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# − 𝑃

26

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∧ 𝑙" ∧ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ number	of	variables

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# − 𝑃

27

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∧ 𝑙" ∧ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ number	of	variables

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# − 𝑃

28

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∧ 𝑙" ∧ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ number	of	variables

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# − 𝑃

29

Literals that have
positive polarity
(i.e., not negated)

Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∧ 𝑙" ∧ ⋯,

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ number	of	variables

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# − 𝑃

30

Literals that have
positive polarity
(i.e., not negated)

Literals that have
positive polarity
(i.e., not negated)

How can we extend this to arbitrary Boolean functions?

Ideas?

31

How can we extend this to arbitrary Boolean functions?

Any Boolean function can be written in as a conjunctive normal form

A conjunctive normal form is a conjunction of disjunctions
– We know how to write each disjunction as a one layer network

– Each disjunction produces a 0 or a 1

– The final function is a conjunction of these disjunction values. We know how to write the
conjunction as a one layer network that operates on top of the disjunctions

Let’s see an example

32

Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#

33

An example

Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#

In CNF 𝑋! ∨ 𝑋# ∧ ¬𝑋! ∨ 𝑋#

34

An example

Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#

In CNF 𝑋! ∨ 𝑋# ∧ ¬𝑋! ∨ 𝑋#

35

𝑋! 𝑋" 𝑋#

𝑋! ∨ 𝑋# ≡ sgn 𝑋! + 𝑋# − 1 𝐷!
1

Edge weight = -1

Edge weight = +1

An example

Threshold activation

Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#

In CNF 𝑋! ∨ 𝑋# ∧ ¬𝑋! ∨ 𝑋#

36

𝑋! 𝑋" 𝑋#

𝑋! ∨ 𝑋# ≡ sgn 𝑋! + 𝑋# − 1 𝐷"𝐷!
1

¬𝑋! ∨ 𝑋" ≡ sgn −𝑋! + 𝑋"

Edge weight = -1

Edge weight = +1

An example

Threshold activation

Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#

In CNF 𝑋! ∨ 𝑋# ∧ ¬𝑋! ∨ 𝑋#

37

𝑋! 𝑋" 𝑋#

𝑋! ∨ 𝑋# ≡ sgn 𝑋! + 𝑋# − 1 𝐷"𝐷!
1

¬𝑋! ∨ 𝑋" ≡ sgn −𝑋! + 𝑋"

𝑓

2

Edge weight = -1

Edge weight = +1

An example

Threshold activation

Exercises

1. Threshold activations produce -1 or 1, but the construction we saw treats true and false as
1 and 0 respectively. Adapt the approach for -1 and +1

2. How will this construction change for a disjunctive normal form?

3. If any Boolean function can be represented as two layer network, what is the catch?

38

Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic

39

The first paper to introduce artificial neural networks

40

But wait there’s more…

41

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

But wait there’s more…

42

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

But wait there’s more…

43

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1)

But wait there’s more…

44

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1)

But wait there’s more…

45

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1)

But wait there’s more…

46

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3

But wait there’s more…

47

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3

But wait there’s more…

48

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3

But wait there’s more…

49

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3

But wait there’s more…

50

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3
𝑁$ 𝑡 = 𝑁" 𝑡 − 1 ∧ 𝑁" 𝑡 − 2

But wait there’s more…

51

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3
𝑁$ 𝑡 = 𝑁" 𝑡 − 1 ∧ 𝑁" 𝑡 − 2

But wait there’s more…

52

“The method […] does in fact provide a very convenient and
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function

Some examples:

𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∧ ¬𝑁"(𝑡 − 1) 𝑁# 𝑡 = 𝑁! 𝑡 − 1 ∨ ¬𝑁" 𝑡 − 2 ∧ 𝑁" 𝑡 − 3
𝑁$ 𝑡 = 𝑁" 𝑡 − 1 ∧ 𝑁" 𝑡 − 2

This was an important paper

Introduced artificial neural networks
– Time plays an important role in the design of the networks
– Describes neural networks with loops as a mechanism to model memory

Showed that a network consisting of McCulloch-Pitts neurons can compute exactly those functions as a
Turing machine with a finite tape

Influenced subsequent research into automata and logic. Some examples:
– John von Neumann’s work on digital computers & theory of automata
– Stephen Kleene invented regular expressions in an attempt to describe a certain subset of

McCulloch-Pitts neural networks (They used the term ‘prehensible’ to describe the sets)

– Perceptrons built on top of these ideas

53

Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic

54

Domain theories versus example-based learning

55

Suppose you want to teach a student to recognize members of a certain class

Domain theories versus example-based learning

Approach 1
Define a domain theory that describes:

– how to recognize critical facets of class
members

– how those facets interact

Use this domain theory to teach the
student to distinguish between members
and nonmembers of the class

56

Suppose you want to teach a student to recognize members of a certain class

Domain theories versus example-based learning

Approach 1
Define a domain theory that describes:

– how to recognize critical facets of class
members

– how those facets interact

Use this domain theory to teach the
student to distinguish between members
and nonmembers of the class

Approach 2
Show the student many examples of
objects, one at a time

– For each example, tell the student whether
it is or is not a member of the class

After seeing sufficient examples, the
student can identify new examples

57

Suppose you want to teach a student to recognize members of a certain class

Domain theories versus example-based learning

Approach 1
Define a domain theory that describes:

– how to recognize critical facets of class
members

– how those facets interact

Use this domain theory to teach the
student to distinguish between members
and nonmembers of the class

Approach 2
Show the student many examples of
objects, one at a time

– For each example, tell the student whether
it is or is not a member of the class

After seeing sufficient examples, the
student can identify new examples

58

Suppose you want to teach a student to recognize members of a certain class

Empirical learningHand-built classifiers

Knowledge-Based Artificial Neural Networks (KBANN)

A hybrid that combines domain theories with learned systems

The high level approach:
1. Translate the domain rules into a neural network
2. Train the network using backpropagation

59

Towell, Geoffrey G., and Jude W. Shavlik. 1994. “Knowledge-Based Artificial Neural Networks.” Artificial Intelligence 70 (1–2): 119–65

Knowledge-Based Artificial Neural Networks (KBANN)

A hybrid that combines domain theories with learned systems

The high level approach:
1. Translate the domain rules into a neural network
2. Train the network using backpropagation

60

Converting knowledge bases into neural networks

61

At a high level, similar to what we have already seen

Works with a knowledge specified as Horn clauses

𝐵 ∧ 𝐶 ∧ 𝐷 ∧ ¬𝐸 → 𝐴

Converting knowledge bases into neural networks

62

At a high level, similar to what we have already seen

Works with a knowledge specified as Horn clauses

𝐵 ∧ 𝐶 ∧ 𝐷 ∧ ¬𝐸 → 𝐴 𝐵 ∨ 𝐶 ∨ 𝐷 ∨ 𝐸 → 𝐴

Illustration of rules-to-network translation

63

1. Normalize the knowledge base

Illustration of rules-to-network translation

64

1. Normalize the knowledge base

2. Convert the KB into a network
using the rules for conjunctions
and disjunctions

Illustration of rules-to-network translation

65

1. Normalize the knowledge base

2. Convert the KB into a network
using the rules for conjunctions
and disjunctions

3. Add additional hidden nodes if
necessary

Illustration of rules-to-network translation

66

1. Normalize the knowledge base

2. Convert the KB into a network
using the rules for conjunctions
and disjunctions

3. Add additional hidden nodes if
necessary

4. Add all other edges between pairs
of layers, with small random
weights

Illustration of rules-to-network translation

67

1. Normalize the knowledge base

2. Convert the KB into a network
using the rules for conjunctions
and disjunctions

3. Add additional hidden nodes if
necessary

4. Add all other edges between pairs
of layers, with small random
weights

This final network is ready
to train on data

A more real example involving a genomics application

68

Gets mapped to

Key observations

When there’s a limited amount of data, KBANN outperforms a knowledge-
agnostic network

The approach constructs the structure of the network and assigns initial
weights for some edges. Both factors are important

Limitation: Cannot handle rules that have cycles in them

The eventual learned network may overrule the initial weights that come
from the rules. Yet the rules help empirically

69

Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic

70

Is it realistic to build entire networks using logic?

What are some disadvantages?

71

Is it realistic to build entire networks using logic?

What are some disadvantages?

We may have an existing neural network architecture for a task
– Don’t want to get rid of something that works

The logical rules may be incomplete
– For complex phenomena, maybe there is no complete symbolic description

The logical rules may be incorrect
– Maybe they were derived using a theoretical framework that is not correct

The rules may be only partially correct
– Maybe they are to be treated as soft constraints that data should be allowed to override

72

Can we integrate rules into an existing network?

Not always possible

We will assume that some nodes in the network are named neurons
(i.e. some nodes have externally defined semantics)

We will write rules about these nodes

Goal: Integrate rules into a network that can be trained end-to-end

73

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

74
Li, Tao, and Vivek Srikumar. "Augmenting Neural Networks with First-order Logic." In ACL 2019

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the
network

75

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the
network

76

𝑧

𝑦

Possibly many layers

✓

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the
network

77

𝑧

𝑦

𝑦

𝑧

Possibly many layers Possibly many layers

✓ ✗

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the
network

78

𝑧

𝑦

𝑦

𝑧

Possibly many layers Possibly many layers

✓ ✗

Such rules are called acyclic

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

79

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

80

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

81

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

If 𝑧 is 1, then 𝑦 should be 1

Can we change something in the
architecture that enforces this? Ideas?

If 𝑧 is 0, then the rule
doesn’t say anything about 𝑦

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

82

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

If 𝑧 is 1, then 𝑦 should be 1 The logit for 𝑦 should be infinite

If 𝑧 is 0, then the rule
doesn’t say anything about 𝑦

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

83

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

If 𝑧 is 1, then 𝑦 should be 1 The logit for 𝑦 should be infinite

The logit for 𝑦 should be whatever
the rest of the network says

If 𝑧 is 0, then the rule
doesn’t say anything about 𝑦

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

84

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

If 𝑧 is 1, then 𝑦 should be 1 The logit for 𝑦 should be infinite

The logit for 𝑦 should be whatever
the rest of the network says

If 𝑧 is 0, then the rule
doesn’t say anything about 𝑦

Can we change something in the
architecture that enforces this? Ideas?

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

85

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱
The immediate input layer to 𝑦 is
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧)

The immediate input layer to 𝑦 is
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧)

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

86

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

Takes value 1 if the LHS of
the rule is true

The immediate input layer to 𝑦 is
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧)

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

87

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of
the rule is true

The immediate input layer to 𝑦 is
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧)

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

88

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of
the rule is true

A large positive number
to make the logit infinite
of the LHS is true

The immediate input layer to 𝑦 is
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧)

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

89

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of
the rule is true

A large positive number
to make the logit infinite
of the LHS is true

Why is this problematic?

The immediate input layer to 𝑦 is
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧)

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network
that correspond to these predicates

90

The immediate input layer
to 𝑦 is a layer 𝐱

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be
directly connected to
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of
the rule is true

A large positive number
to make the logit infinite
of the LHS is true

Why is this problematic?

The function 𝑑 is not differentiable
for more complex LHS

Prohibits end-to-end training

Using differentiable rules

The solution: Relax the LHS with Lukasiewicz logic

91

Augmenting models: An example

𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers

92

Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers

93

Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers

94

𝑏! 𝑏"

𝑑

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers

95

𝑏!′

𝑑

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Step 2: Define constrained node:
𝑏!′ = 𝜎(𝐰I𝐱 + 𝜌	𝑑(𝑎!, 𝑎"))

Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers

96

𝑏!′ 𝑏"

𝑑

𝑏!′ = 𝜎(𝐰"𝐱 + 𝜌	𝑑(𝑎!, 𝑎#))
𝑏! = 𝜎(𝐰%𝐱)

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Step 2: Define constrained node:
𝑏!′ = 𝜎(𝐰I𝐱 + 𝜌	𝑑(𝑎!, 𝑎"))

Step 3: Replace original 𝑏! with 𝑏!′

Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers

97

𝑏!′ 𝑏"

𝑑

𝑏!′ = 𝜎(𝐰"𝐱 + 𝜌	𝑑(𝑎!, 𝑎#))
𝑏! = 𝜎(𝐰%𝐱)

No additional trainable parameters introduced
Hyperparameter 𝜌	controls how strongly the constraint is enforced

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Step 2: Define constrained node:
𝑏!′ = 𝜎(𝐰I𝐱 + 𝜌	𝑑(𝑎!, 𝑎"))

Step 3: Replace original 𝑏! with 𝑏!′

Natural Language Inference

SNLI dataset, decomposable attention model [Parikh et al 2016]

Two constraints (formalized in first order logic):
1. If two words are related, they should be aligned
2. If no content word in the hypothesis is aligned, then the label cannot be Entail

98

Results: Natural Language Inference

61.2

66.5

73.4

78.9

87.1

64.2

70.2

76.4
80.3

86.9

1% 2% 5% 10% 100%
Percentage of training set used

Decomposable Attention Model With constraints
99

Results: Natural Language Inference

61.2

66.5

73.4

78.9

87.1

64.2

70.2

76.4
80.3

86.9

1% 2% 5% 10% 100%
Percentage of training set used

Decomposable Attention Model With constraints

1. Constraints help

100

Results: Natural Language Inference

61.2

66.5

73.4

78.9

87.1

64.2

70.2

76.4
80.3

86.9

1% 2% 5% 10% 100%
Percentage of training set used

Decomposable Attention Model With constraints

1. Constraints help

2. Larger improvements if
training data is limited (~3%)

101

Results: Natural Language Inference

61.2

66.5

73.4

78.9

87.1

64.2

70.2

76.4
80.3

86.9

1% 2% 5% 10% 100%
Percentage of training set used

Decomposable Attention Model With constraints

1. Constraints help

2. Larger improvements if
training data is limited (~3%)

3. With 0.5M data, constraints
don’t help, or even slightly hurt

102

Results: Natural Language Inference

61.2

66.5

73.4

78.9

87.1

64.2

70.2

76.4
80.3

86.9

1% 2% 5% 10% 100%
Percentage of training set used

Decomposable Attention Model With constraints

1. Constraints help

2. Larger improvements if
training data is limited (~3%)

3. With 0.5M data, constraints
don’t help, or even slightly hurt

Have very large
dataset? Just
believe the data.

103

Difficulties with this approach

What are some shortcomings of the idea of constructing or editing neural
network architectures with knowledge?

104

Difficulties with this approach

What are some shortcomings of the idea of constructing or editing neural
network architectures with knowledge?

1. Acyclicity can be a strong constraint

2. Assumes that we have named neurons. Does not apply to modern
transformer networks

105

Logic as architectures: Summary

• One of the oldest ideas in this area
– Goes back to the original work of McCulloch & Pitts

• Key intuition: Generate or augment a neural network using rules

• Experiments show gains especially in low data regimes

• Design difficulties with modern large models

106

