
Logic-based Architectures

Neuro-symbolic modeling



What we have seen so far: Logic to design loss functions

Most neural networks are opaque and the only interfaces we have are at the inputs and 
outputs

This means that most constraints will also about them

Can we write loss functions about the outputs that encourage the model to satisfy the 
constraints? Each constraint will be mapped to its own loss

We can then use any learning algorithm/optimizer
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This lecture: Logic to design networks

Suppose we have a neural network and a constraint that involves a few 
nodes in the network

Can we somehow re-architect the network so that the resulting 
architecture (by construction) satisfies the constraint? Or almost satisfies 
the constraint?
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Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic
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Can we represent a logical statement as a neural network?
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Can we represent a logical statement as a neural network?

Example 1: Consider the function
𝑓! = 𝑋! ∧ 𝑋"
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Can we represent a logical statement as a neural network?

Example 1: Consider the function
𝑓! = 𝑋! ∧ 𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" ≥ 2
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Easy to verify this. 

The function is true if, and only if, both the variables are set 
to true. That is, the number of true’s (i.e. ones) in the 
summation is at least two



Can we represent a logical statement as a neural network?

Example 1: Consider the function
𝑓! = 𝑋! ∧ 𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" ≥ 2

And linear threshold units are one layer networks with a threshold activation
𝑓! = sgn 𝑋! + 𝑋" − 2
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Can we represent a logical statement as a neural network?

Example 2: Consider the function
𝑓" = 𝑋! ∧ ¬𝑋"
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Can we represent a logical statement as a neural network?

Example 2: Consider the function
𝑓" = 𝑋! ∧ ¬𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 1 − 𝑋" ≥ 2
That is, 𝑋! − 𝑋" ≥ 1
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Can we represent a logical statement as a neural network?

Example 2: Consider the function
𝑓" = 𝑋! ∧ ¬𝑋"

This function is equivalent to the linear threshold unit 𝑋! + 1 − 𝑋" ≥ 2
That is, 𝑋! − 𝑋" ≥ 1

And linear threshold units are one layer networks with a threshold activation
𝑓" = sgn 𝑋! − 𝑋" − 1
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Can we represent a logical statement as a neural network?

Example 3: Consider the function
𝑓# = 𝑋! ∨ 𝑋" ∨ 𝑋# ∨ 𝑋$
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Example 3: Consider the function
𝑓# = 𝑋! ∨ 𝑋" ∨ 𝑋# ∨ 𝑋$

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" + 𝑋# + 𝑋$ ≥ 1
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Can we represent a logical statement as a neural network?

Example 3: Consider the function
𝑓# = 𝑋! ∨ 𝑋" ∨ 𝑋# ∨ 𝑋$

This function is equivalent to the linear threshold unit 𝑋! + 𝑋" + 𝑋# + 𝑋$ ≥ 1

And linear threshold units are one layer networks with a threshold activation

𝑓# = sgn /𝑋% − 1
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Can we represent a logical statement as a neural network?

Example 4: Consider the function
𝑓$ = 𝑋! → 𝑋" ≡ ¬𝑋! ∨ 𝑋"
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Can we represent a logical statement as a neural network?

Example 4: Consider the function
𝑓$ = 𝑋! → 𝑋" ≡ ¬𝑋! ∨ 𝑋"

This function is equivalent to the linear threshold unit 1 − 𝑋! + 𝑋" ≥ 1
That is, −𝑋! + 𝑋" ≥ 0
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Can we represent a logical statement as a neural network?

Example 4: Consider the function
𝑓$ = 𝑋! → 𝑋" ≡ ¬𝑋! ∨ 𝑋"

This function is equivalent to the linear threshold unit 1 − 𝑋! + 𝑋" ≥ 1
That is, −𝑋! + 𝑋" ≥ 0

And linear threshold units are one layer networks with a threshold activation
𝑓$ = sgn −𝑋! + 𝑋"
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Conjunctions & disjunctions are linearly separable

This offers a simple recipe to write them as threshold linear units
Suppose 𝑓 = 𝑙! ∨ 𝑙" ∨ ⋯, 

where 𝑙# is the variable 𝑋# or its negation ¬𝑋#

The expression 𝑓 is true if the number of true literals is at least 1. That is, if

(
#

𝑙# ≥ 1

But some literals show up with a negation. For such literals 𝑙# = 1 − 𝑋#

sgn (
#∈%	

𝑋# −(
#∈'

𝑋# + 𝑁 − 1
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This offers a simple recipe to write them as threshold linear units
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How can we extend this to arbitrary Boolean functions?

Ideas?
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How can we extend this to arbitrary Boolean functions?

Any Boolean function can be written in as a conjunctive normal form 

A conjunctive normal form is a conjunction of disjunctions
– We know how to write each disjunction as a one layer network

– Each disjunction produces a 0 or a 1

– The final function is a conjunction of these disjunction values. We know how to write the 
conjunction as a one layer network that operates on top of the disjunctions

Let’s see an example
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Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#
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Arbitrary Boolean function as a two-layer network

Consider 𝑓 = 𝑋! → 𝑋" → 𝑋#

In CNF 𝑋! ∨ 𝑋# ∧ ¬𝑋! ∨ 𝑋#

34

An example



Arbitrary Boolean function as a two-layer network
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𝑋! 𝑋" 𝑋#

𝑋! ∨ 𝑋# ≡ sgn 𝑋! + 𝑋# − 1 𝐷!
1

Edge weight = -1

Edge weight = +1

An example

Threshold activation
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Exercises

1. Threshold activations produce -1 or 1, but the construction we saw treats true and false as 
1 and 0 respectively. Adapt the approach for -1 and +1

2. How will this construction change for a disjunctive normal form?

3. If any Boolean function can be represented as two layer network, what is the catch?
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Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic
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The first paper to introduce artificial neural networks
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But wait there’s more…

41

“The method […] does in fact provide a very convenient and 
workable procedure for constructing nervous nets to order…”

The paper shows how to construct neural networks for any Boolean function
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This was an important paper

Introduced artificial neural networks
– Time plays an important role in the design of the networks 
– Describes neural networks with loops as a mechanism to model memory

Showed that a network consisting of McCulloch-Pitts neurons can compute exactly those functions as a 
Turing machine with a finite tape

Influenced subsequent research into automata and logic. Some examples:
– John von Neumann’s work on digital computers & theory of automata
– Stephen Kleene invented regular expressions in an attempt to describe a certain subset of 

McCulloch-Pitts neural networks (They used the term ‘prehensible’ to describe the sets)

– Perceptrons built on top of these ideas
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Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic
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Domain theories versus example-based learning

55

Suppose you want to teach a student to recognize members of a certain class



Domain theories versus example-based learning

Approach 1
Define a domain theory that describes:

– how to recognize critical facets of class 
members 

– how those facets interact

Use this domain theory to teach the 
student to distinguish between members 
and nonmembers of the class
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Empirical learningHand-built classifiers



Knowledge-Based Artificial Neural Networks (KBANN)

A hybrid that combines domain theories with learned systems

The high level approach:
1. Translate the domain rules into a neural network
2. Train the network using backpropagation

59
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Converting knowledge bases into neural networks
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Works with a knowledge specified as Horn clauses

𝐵 ∧ 𝐶 ∧ 𝐷 ∧ ¬𝐸 → 𝐴
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At a high level, similar to what we have already seen

Works with a knowledge specified as Horn clauses
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Illustration of rules-to-network translation
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weights



Illustration of rules-to-network translation
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1. Normalize the knowledge base

2. Convert the KB into a network 
using the rules for conjunctions 
and disjunctions

3. Add additional hidden nodes if 
necessary

4. Add all other edges between pairs 
of layers, with small random 
weights

This final network is ready 
to train on data



A more real example involving a genomics application
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Gets mapped to



Key observations

When there’s a limited amount of data, KBANN outperforms a knowledge-
agnostic network

The approach constructs the structure of the network and assigns initial 
weights for some edges. Both factors are important

Limitation: Cannot handle rules that have cycles in them

The eventual learned network may overrule the initial weights that come 
from the rules. Yet the rules help empirically
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Lecture outline

• Conjunctions, Disjunctions and Boolean functions as threshold networks

• The McCulloch-Pitts paper

• Knowledge-Based Artificial Neural Networks

• Augmenting neural networks with logic
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Is it realistic to build entire networks using logic?

What are some disadvantages? 
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Is it realistic to build entire networks using logic?

What are some disadvantages? 

We may have an existing neural network architecture for a task
– Don’t want to get rid of something that works

The logical rules may be incomplete
– For complex phenomena, maybe there is no complete symbolic description

The logical rules may be incorrect
– Maybe they were derived using a theoretical framework that is not correct

The rules may be only partially correct
– Maybe they are to be treated as soft constraints that data should be allowed to override
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Can we integrate rules into an existing network?

Not always possible

We will assume that some nodes in the network are named neurons
(i.e. some nodes have externally defined semantics)

We will write rules about these nodes

Goal: Integrate rules into a network that can be trained end-to-end
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the 
network
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that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the 
network
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates

Important assumption: The node 𝑦 is downstream of the node 𝑧 in the 
network
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Such rules are called acyclic



The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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to 𝑦 is a layer 𝐱 

𝑦 = 𝜎(𝐰%𝐱)
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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The immediate input layer 
to 𝑦 is a layer 𝐱 

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be 
directly connected to 
the node 𝑦

𝐱

If 𝑧 is 1, then 𝑦 should be 1

Can we change something in the 
architecture that enforces this? Ideas?

If 𝑧 is 0, then the rule 
doesn’t say anything about 𝑦



The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates

82

The immediate input layer 
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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The immediate input layer 
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If 𝑧 is 1, then 𝑦 should be 1 The logit for 𝑦 should be infinite

The logit for 𝑦 should be whatever 
the rest of the network says

If 𝑧 is 0, then the rule 
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates

84

The immediate input layer 
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The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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The immediate input layer 
to 𝑦 is a layer 𝐱 

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be 
directly connected to 
the node 𝑦

𝐱
The immediate input layer to 𝑦 is 
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧 )



The immediate input layer to 𝑦 is 
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧 )

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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the rule is true



The immediate input layer to 𝑦 is 
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧 )

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
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𝑦

Possibly many layers

The node 𝑧 need not be 
directly connected to 
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of 
the rule is true



The immediate input layer to 𝑦 is 
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧 )

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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𝑑 𝑧 = $1,	0,
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else	
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the rule is true

A large positive number 
to make the logit infinite 
of the LHS is true



The immediate input layer to 𝑦 is 
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧 )

The intuition

Suppose we have a rule 𝑍 → 𝑌 and 𝑧 and 𝑦 are nodes in a neural network 
that correspond to these predicates
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The immediate input layer 
to 𝑦 is a layer 𝐱 

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be 
directly connected to 
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of 
the rule is true

A large positive number 
to make the logit infinite 
of the LHS is true

Why is this problematic?



The immediate input layer to 𝑦 is 
a layer 𝐱 and the node 𝑧

𝑦 = 𝜎(𝐰%𝐱	 + 𝜌𝑑 𝑧 )

The intuition
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that correspond to these predicates
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The immediate input layer 
to 𝑦 is a layer 𝐱 

𝑦 = 𝜎(𝐰%𝐱)

𝑧

𝑦

Possibly many layers

The node 𝑧 need not be 
directly connected to 
the node 𝑦

𝐱

𝑑 𝑧 = $1,	0,
Z	holds
else	

Takes value 1 if the LHS of 
the rule is true

A large positive number 
to make the logit infinite 
of the LHS is true

Why is this problematic?

The function 𝑑 is not differentiable  
for more complex LHS

Prohibits end-to-end training



Using differentiable rules

The solution: Relax the LHS with Lukasiewicz logic
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Augmenting models: An example

𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers
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Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers
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𝑏! 𝑏"

𝑑

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)



Augmenting models: An example
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𝑏!′

𝑑

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Step 2: Define constrained node: 
𝑏!′ = 𝜎(𝐰I𝐱 + 𝜌	𝑑(𝑎!, 𝑎"))



Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers
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𝑏!′ 𝑏"

𝑑

𝑏!′ = 𝜎(𝐰"𝐱 + 𝜌	𝑑(𝑎!, 𝑎#))
𝑏! = 𝜎(𝐰%𝐱)

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Step 2: Define constrained node: 
𝑏!′ = 𝜎(𝐰I𝐱 + 𝜌	𝑑(𝑎!, 𝑎"))

Step 3: Replace original 𝑏! with 𝑏!′



Augmenting models: An example

𝐴3 ∧ 𝐴4 → 𝐵3𝑏! = 𝜎(𝐰%𝐱)

𝑏! 𝑏"

𝑎! 𝑎" 𝑎#

Possibly many layers
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𝑏!′ 𝑏"

𝑑

𝑏!′ = 𝜎(𝐰"𝐱 + 𝜌	𝑑(𝑎!, 𝑎#))
𝑏! = 𝜎(𝐰%𝐱)

No additional trainable parameters introduced
Hyperparameter 𝜌	controls how strongly the constraint is enforced

Step 1: LHS in Łukasiewicz logic
𝑑 𝑎!, 𝑎" = max(0, 𝑎! + 𝑎" − 1)

Step 2: Define constrained node: 
𝑏!′ = 𝜎(𝐰I𝐱 + 𝜌	𝑑(𝑎!, 𝑎"))

Step 3: Replace original 𝑏! with 𝑏!′



Natural Language Inference

SNLI dataset, decomposable attention model [Parikh et al 2016]

Two constraints (formalized in first order logic):
1. If two words are related, they should be aligned
2. If no content word in the hypothesis is aligned, then the label cannot be Entail
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Results: Natural Language Inference
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Results: Natural Language Inference
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87.1

64.2
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76.4
80.3

86.9
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Percentage of training set used

Decomposable Attention Model With constraints

1. Constraints help

2. Larger improvements if 
training data is limited (~3%)

3. With 0.5M data, constraints 
don’t help, or even slightly hurt

Have very large 
dataset? Just 
believe the data.
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Difficulties with this approach 

What are some shortcomings of the idea of constructing or editing neural 
network architectures with knowledge?
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Difficulties with this approach 

What are some shortcomings of the idea of constructing or editing neural 
network architectures with knowledge?

1. Acyclicity can be a strong constraint

2. Assumes that we have named neurons. Does not apply to modern 
transformer networks
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Logic as architectures: Summary

• One of the oldest ideas in this area 
– Goes back to the original work of McCulloch & Pitts

• Key intuition: Generate or augment a neural network using rules

• Experiments show gains especially in low data regimes

• Design difficulties with modern large models
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