
Neural Networks refresher

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

1

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

2

Artificial neurons

Functions that very loosely mimic a biological neuron

A basic neuron accepts a collection of inputs (a vector x) and produces an output by:
– Applying a dot product with weights w and adding a bias b
– Applying a (possibly non-linear) transformation called an activation

3

Dot
product

Threshold activation

Other activations are possible

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘!𝒙 + 𝑏)

Activation functions

Name of the neuron 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑧
Linear unit 𝑧
Threshold/sign unit sgn(𝑧)

Sigmoid unit
1

1 + exp(−𝑧)
Rectified linear unit (ReLU) max(0, 𝑧)
Tanh unit tanh(𝑧)

4

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘!𝒙 + 𝑏)

Many more activation functions exist (sinusoid, sinc, gaussian, polynomial…)

Also called transfer functions

A neural network

A function that converts inputs to outputs defined by a
directed acyclic graph

– Nodes organized in layers, correspond to neurons
– Edges carry output of one neuron to another, associated

with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node
– The edge weights

5

A neural network

A function that converts inputs to outputs defined by a
directed acyclic graph

– Nodes organized in layers, correspond to neurons
– Edges carry output of one neuron to another, associated

with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node
– The edge weights

6

Called the architecture
of the network
Typically predefined,
part of the design of
the classifier

Learned from data

Input

Hidden

Output

w"#
$

w"#
%

A neural network

A function that converts inputs to outputs defined by a
directed acyclic graph

– Nodes organized in layers, correspond to neurons
– Edges carry output of one neuron to another, associated

with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node
– The edge weights

7

Input

Hidden

Output

w"#
$

w"#
%

A neural network

A function that converts inputs to outputs defined by a
directed acyclic graph

– Nodes organized in layers, correspond to neurons
– Edges carry output of one neuron to another, associated

with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node
– The edge weights

8

Called the architecture of the
network
Typically predefined, part of the
design of the classifier

Learned from data

Input

Hidden

Output

w"#
$

w"#
%

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

9

Neural networks are differentiable computation
units that operate on and produce tensors

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

10

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

11

Scalars (i.e., numbers) are tensors with
zero dimensions. 3, -1, 1.1, …

Why zero dimensions? Because we
need zero indices to find only element
contained in it

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

12

Vectors are one dimensional tensors:
 [1,2,3], [-11.3, 0], …

Why one dimensional? Because we need one
index to address any element in the vector

The shape of this tensor is 6.
It is a six dimensional vector.

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

13

Matrices are two dimensional tensors

Why two dimensional? Because we need two indexes
to address any element in it

The shape of this tensor is (4, 3). It is a 4×3 matrix.

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

14

This is a three dimensional tensor. We need
three indexes to address any element in it.

Its shape is (4, 3, 3)

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

15

And so on…

Operations on tensors

Indexing to obtain sub-tensors (or scalars). Examples:

– 𝑥 𝑖 ,𝑀 𝑖, 𝑗 , 𝐴 𝑖, 𝑗, 𝑘 , … (sometimes written using subscripts): Look up an entry in a
vector 𝑥 or a matrix 𝑀 or a 3-dimensional tensor 𝐴

– 𝑀 𝑖, : (using numpy notation): Lookup the 𝑖!" row of the matrix 𝑀

– 𝐴 𝑖, : , : (using numpy notation): Lookup the 𝑖!" slice of tensor 𝐴 to produce a matrix

– 𝑇 : , : , : , 𝑖 (using numpy notation): Lookup the 𝑖!" sub-tensor of a 4-dimensional 𝑇 to
produce a 3-dimensional tensor

16

Operations on tensors

Tensors of the same shape can be:
• Added: Add the corresponding elements

• Multiplied element-wise: Multiply corresponding elements

• …any binary operation on numbers can be applied elementwise

17

Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×(, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]

18

Sometimes this is called Tensor Mode-n Multiplication

Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×(, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]

19

Sometimes this is called Tensor Mode-n Multiplication

This is just matrix-matrix multiplication

Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×(, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]

20

Sometimes this is called Tensor Mode-n Multiplication

Operations on tensors

Elementwise operations: Apply some function to each element of the
tensor

21

0 -3

1 2

-2 -1

0 3

1 2

2 1

0 9

1 4

4 1

Elementwise square

Elementwise absolute value

Operations on tensors

Reshape: Re-organize the numbers in the tensor to produce a tensor of a
different shape and/or dimensionality

22

4

3.5

1.2

-3

9

-1

4 -3

3.5 9

1.2 -1

A 6 dimensional tensor reshaped to a 3×2 matrix

There is a lot more about tensors that you can learn by
working with them, e.g. with PyTorch

23

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs

1. What is the semantics of a computation graph?
2. How do perform computations with them

4. Loss functions and training
5. Design patterns

24

Neural networks are differentiable computation
units that operate on and produce tensors

Computation graphs

A language for constructing deep neural networks and loss functions
– A way to think about differentiable compute

Key ideas:
– We can represent functions as graphs
– We can dynamically generate these graphs if necessary
– We can define algorithms over these graphs that map to learning and prediction

• Prediction via the forward pass
• Learning via gradients computed using the backward pass

25

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs

1. What is the semantics of a computation graph?
2. How do perform computations with them

4. Loss functions and training
5. Design patterns

26

Neural networks are differentiable computation
units that operate on and produce tensors

Nodes represent values

27

Expression 𝐱

𝐱

Graph

The value is implicitly or explicitly typed.

It could represent a
• Scalar (i.e. a number)
• A vector
• A matrix
• Or more generally, a tensor

Edges represent function arguments

28

𝐱

| 𝐱 |
f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲
f 𝐮, 𝐯 = 𝐮&𝐯

𝐲

A node with an incoming edge is a function of the the parent node

Edges represent function arguments

29

𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲

A node with an incoming edge is a function of the the parent node

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮&𝐯

Edges represent function arguments

30

𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲

A node with an incoming edge is a function of the the parent node

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮&𝐯

Edges represent function arguments

31

𝐱

𝐱!𝐲

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples, the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯

𝐱

| 𝐱 |

Notation: We will write down what that function is next to the node.

When we write this, we will use formal arguments (here, the 𝐮 and 𝐯). Think
of these as similar to the argument names we use when we declare
functions while programming.

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮&𝐯

Edges represent function arguments

32

𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮&𝐯

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples, the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯

Graphs represent functions

33

𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮&𝐯

𝐲

The functions expressed could be
• Nullary, i.e. with no arguments: if a node has no incoming edges
• Unary: if a node has one incoming edge
• Binary: if a node has two incoming edges
• …
• n-ary: if a node has n incoming edges

Let’s see some functions as graphs

34

Expression 𝐱!𝐀

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

Let’s see some functions as graphs

35

Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

Let’s see some functions as graphs

36

Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

We could have written the same
function with a different graph.

Computation graphs are not
necessarily unique for a function

Let’s see some functions as graphs

37

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

Let’s see some functions as graphs

38

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

𝜕𝑓
𝜕𝐮 = 𝐌& +𝐌 𝐮

Derivative with
respect to this
parent

Let’s see some functions as graphs

39

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

𝜕𝑓
𝜕𝐌 = 𝐮𝐮!

Derivative with
respect to this

parent

Let’s see some functions as graphs

40

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

Together, we can compute
derivatives of any function with
respect to all its inputs, for any value
of the input

𝜕𝑓
𝜕𝐮 = 𝐌& +𝐌 𝐮

𝜕𝑓
𝜕𝐌 = 𝐮𝐮!

𝜕𝑓
𝜕𝐱 = 𝐀& + 𝐀 𝐱 𝜕𝑓

𝜕𝐀 = 𝐱𝐱!

Let’s see some functions as graphs

41

Expression 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

f 𝑥%, 𝑥$, 𝑥(=3
𝒊

𝑥*

Let’s see some functions as graphs

42

Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥%, 𝑥$, 𝑥(=3
𝒊

𝑥*

Let’s see some functions as graphs

43

Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥%, 𝑥$, 𝑥(=3
𝒊

𝑥*

We can name variables by labeling nodes

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs

1. What is the semantics of a computation graph?
2. How do perform computations with them

4. Loss functions and training
5. Design patterns

44

Neural networks are differentiable computation
units that operate on and produce tensors

Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the

graph
– Something to think about: Given a node, can we say which nodes are inputs?

Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the

function at that input
– Or equivalently: How does the output change if I make a small change to the

input?

45

Forward propagation

46

Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the

graph
– Something to think about: Given a node, can we say which nodes are inputs?

Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the

function at that input
– Or equivalently: How does the output change if I make a small change to the

input?

47

Forward pass: An example

48

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

Conventions:

1. Any expression next to a node is the function it computes
2. All the variables in the expression are inputs to the node from left to right.

Forward pass

49

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Forward pass

50

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

Forward pass

51

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥

Forward pass

52

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

Forward pass

53

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

Forward pass

54

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

Forward pass

55

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

Forward pass

56

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

Forward pass

57

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

Forward pass

58

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦$

Forward pass

59

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed).

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦$

This gives us the function

Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.

60

Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.

61

Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the

graph
– Something to think about: Given a node, can we say which nodes are inputs?

Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the

function at that input
– Or equivalently: How does the output change if I make a small change to the

input?

62

Calculus refresher: The chain rule

Suppose we have two functions 𝑓and 𝑔

We wish to compute the gradient of y = 	𝑓 𝑔 𝑥 .

We know that !"
!#
= 𝑓$ 𝑔 𝑥 ⋅ 𝑔′(𝑥)

Or equivalently: if 𝑧 = 𝑔(𝑥) and 𝑦 = 𝑓(𝑧), then

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑧
𝑑𝑥

63

Or equivalently: In terms of computation graphs

64

𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Or equivalently: In terms of computation graphs

65

𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to
compute its value given inputs, but also how to
compute gradients

Or equivalently: In terms of computation graphs

66

𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to
compute its value given inputs, but also how to
compute gradients

Start from the root of the graph and work backwards.

𝑑𝑦
𝑑𝑧

Or equivalently: In terms of computation graphs

67

𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to
compute its value given inputs, but also how to
compute gradients

Start from the root of the graph and work backwards.

𝑑𝑦
𝑑𝑧

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑧
𝑑𝑥

When traversing an edge backwards to a new node:
the gradient of the root with respect to that node is
the product of the gradient at the parent with the
derivative along that edge

A concrete example

68

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑦 =
1
𝑥$

A concrete example

69

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

Let’s also explicitly write down the derivatives.

A concrete example

70

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

Now, we can proceed backwards from the output

At each step, we compute the gradient of the
function represented by the graph with respect
to the node that we are at.

A concrete example

71

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 +,-

= 1 ⋅ −
1
𝑧$ = −

1
𝑧$

Product of the gradient so far and
the derivative computed at this step

A concrete example

72

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

1
𝑧$

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

= −
1
𝑧$ ⋅ 2𝑥 = −

2x
z$

A concrete example

73

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

We can simplify this to get − F
G!

𝑑𝑦
𝑑𝑧 = −

1
𝑧$

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

= −
1
𝑧$ ⋅ 2𝑥 = −

2x
z$

A concrete example

74

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

A concrete example

75

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑓
𝑑𝑣 =

1
𝑢

Let’s also explicitly write down the derivatives. Note that 𝑓 has two
derivatives because it has two inputs.

A concrete example

76

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

A concrete example

77

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

At this point, we can compute the gradient
of y with respect to z by following the edge
from y to z.

But we can not follow the edge from y to x
because all of x’s descendants are not
marked as done.

A concrete example

78

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 +,-

= 1 ⋅ −
𝑥
𝑧$ = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

Product of the gradient so far and
the derivative computed at this step

A concrete example

79

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 +,-

= 1 ⋅ −
𝑥
𝑧$ = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

Now we can get to x

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths.

A concrete example

80

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths.

A concrete example

81

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths.

A concrete example

82

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths.

A concrete example

83

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

𝑑𝑦
𝑑𝑥 = −

𝑥
𝑧$ ⋅ 2𝑥 + 1 ⋅

1
𝑧 = −

2𝑥$

𝑧$ +
1
𝑧 = −

1
𝑥$

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

Backpropagation, in general

After we have done the forward propagation,

Loop over the nodes in reverse topological order starting with a final goal
node
– Compute derivatives of final goal node value with respect to each edge’s tail node

• If there are multiple outgoing edges from a node, sum up all the derivatives for the edges

84

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

85

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

86

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

87

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

88

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

89

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

90

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

91

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

92

Neural networks are data-driven programs

The forward pass allows us to compute the result of computations on
examples

The backward pass over loss functions allows us to compute the update to
the parameters that produced the loss

Both loss functions and neural networks are computation graphs

This abstraction allows us to think of neural networks as functions (in a
programming sense) that will be “filled in” by data

93

This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

94

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

95

We have different
design choices here

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters

96

We have different
design choices here

Standard libraries offer many choices

97

https://pytorch.org/docs/stable/nn.html

Nearly everything here is a computation graph

That is, they have the same semantics as we saw before

Over the semester, we will be looking at some
non-standard design choices for loss functions
and networks

Neural network architecture design typically involves
standard building blocks
• Softmax: Convert a set of k real valued scores into a distribution over k items

• Multilayer Perceptron (commonly two layered): Abstract an unknown function that produces a tensor

• Attention: Assign an “relevance” score or distribution over a set of items given some context

• Self-attention: Attention over a elements of a sequence, where the context is the sequence itself

• Recurrent networks: Process sequences (text, speech, time series, etc) where the computation for each time step
depends on previous ones

• Convolution: Aggregate local features in a tensor, typically used for images

• Transformer: Encode a collection of items with self-attention + MLP

• Graph neural network: Encode graphs in a way that is aware of the graph structure

98

There are standard building blocks for loss functions

• Cross entropy loss: How far is the distribution produced over a set of
categories (via softmax) from a desired one?

• Squared loss or MSE loss: How far is a real number from a desired one?

Other losses exist too (e.g. ranking loss)

99

What we saw in this lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

100

