
Neural Networks refresher



This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns
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Artificial neurons

Functions that very loosely mimic a biological neuron

A basic neuron accepts a collection of inputs (a vector x) and produces an output by:
– Applying a dot product with weights w and adding a bias b
– Applying a (possibly non-linear) transformation called an activation
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Dot 
product

Threshold activation

Other activations are possible

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘!𝒙 + 𝑏)



Activation functions

Name of the neuron 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑧
Linear unit 𝑧
Threshold/sign unit sgn(𝑧)

Sigmoid unit
1

1 + exp(−𝑧)
Rectified linear unit (ReLU) max(0, 𝑧)
Tanh unit tanh(𝑧)
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𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘!𝒙 + 𝑏)

Many more activation functions exist (sinusoid, sinc, gaussian, polynomial…) 

Also called transfer functions



A neural network

A function that converts inputs to outputs defined by a 
directed acyclic graph

– Nodes organized in layers, correspond to neurons
– Edges carry output of one neuron to another, associated 

with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node
– The edge weights
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Called the architecture 
of the network
Typically predefined, 
part of the design of 
the classifier

Learned from data
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Neural networks are differentiable computation 
units that operate on and produce tensors



Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think 

“multi-dimensional arrays”
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Scalars (i.e., numbers) are tensors with 
zero dimensions. 3, -1, 1.1, …

Why zero dimensions? Because we 
need zero indices to find only element 
contained in it 
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Vectors are one dimensional tensors:
 [1,2,3], [-11.3, 0], …

Why one dimensional? Because we need one 
index to address any element in the vector

The shape of this tensor is 6.
It is a six dimensional vector.
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Matrices are two dimensional tensors

Why two dimensional? Because we need two indexes  
to address any element in it

The shape of this tensor is (4, 3). It is a 4×3 matrix.



Tensors: A quick primer
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“multi-dimensional arrays”
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This is a three dimensional tensor. We need 
three indexes  to address any element in it.

Its shape is (4, 3, 3)



Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think 

“multi-dimensional arrays”
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And so on… 



Operations on tensors

Indexing to obtain sub-tensors (or scalars). Examples:

– 𝑥 𝑖 ,𝑀 𝑖, 𝑗 , 𝐴 𝑖, 𝑗, 𝑘 , … (sometimes written using subscripts): Look up an entry in a 
vector 𝑥 or a matrix 𝑀 or a 3-dimensional tensor 𝐴

– 𝑀 𝑖, :  (using numpy notation): Lookup the 𝑖!" row of the matrix 𝑀

– 𝐴 𝑖, : , :  (using numpy notation): Lookup the 𝑖!" slice of tensor 𝐴 to produce a matrix

– 𝑇 : , : , : , 𝑖  (using numpy notation): Lookup the 𝑖!" sub-tensor of a 4-dimensional 𝑇 to 
produce a 3-dimensional tensor
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Operations on tensors

Tensors of the same shape can be:
• Added: Add the corresponding elements

• Multiplied element-wise: Multiply corresponding elements

• …any binary operation on numbers can be applied elementwise
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Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×( , 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]
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Sometimes this is called Tensor Mode-n Multiplication
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Sometimes this is called Tensor Mode-n Multiplication

This is just matrix-matrix multiplication
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Sometimes this is called Tensor Mode-n Multiplication



Operations on tensors

Elementwise operations: Apply some function to each element of the 
tensor
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0 -3

1 2

-2 -1

0 3

1 2

2 1

0 9

1 4

4 1

Elementwise square

Elementwise absolute value



Operations on tensors

Reshape: Re-organize the numbers in the tensor to produce a tensor of a 
different shape and/or dimensionality
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4

3.5

1.2

-3

9

-1

4 -3

3.5 9

1.2 -1

A 6 dimensional tensor reshaped to a 3×2 matrix



There is a lot more about tensors that you can learn by 
working with them, e.g. with PyTorch
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Neural networks are differentiable computation 
units that operate on and produce tensors



Computation graphs

A language for constructing deep neural networks and loss functions
– A way to think about differentiable compute

Key ideas: 
– We can represent functions as graphs
– We can dynamically generate these graphs if necessary
– We can define algorithms over these graphs that map to learning and prediction

• Prediction via the forward pass
• Learning via gradients computed using the backward pass
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Neural networks are differentiable computation 
units that operate on and produce tensors



Nodes represent values
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Expression 𝐱

𝐱

Graph

The value is implicitly or explicitly typed.

It could represent a 
• Scalar (i.e. a number)
• A vector
• A matrix
• Or more generally, a tensor



Edges represent function arguments
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𝐱

| 𝐱 |
f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲
f 𝐮, 𝐯 = 𝐮&𝐯

𝐲

A node with an incoming edge is a function of the the parent node



Edges represent function arguments
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𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲
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Edges represent function arguments
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𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲
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Edges represent function arguments

31

𝐱

𝐱!𝐲

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples,  the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯
 

𝐱

| 𝐱 |

Notation: We will write down what that function is next to the node.

When we write this, we will use formal arguments (here, the 𝐮 and 𝐯). Think 
of these as similar to the argument names we use when we declare 
functions while programming. 

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮&𝐯



Edges represent function arguments
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𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮&𝐯

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples,  the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯
 



Graphs represent functions
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𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮&𝐯

𝐲

The functions expressed could be 
• Nullary, i.e. with no arguments: if a node has no incoming edges
• Unary: if a node has one incoming edge
• Binary: if a node has two incoming edges
• …
• n-ary: if a node has n incoming edges



Let’s see some functions as graphs
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Expression 𝐱!𝐀

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

We could have written the same 
function with a different graph.

Computation graphs are not 
necessarily unique for a function



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent

𝜕𝑓
𝜕𝐮 = 𝐌& +𝐌 𝐮

Derivative with 
respect to this 
parent



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent

𝜕𝑓
𝜕𝐌 = 𝐮𝐮!

Derivative with 
respect to this 

parent



Let’s see some functions as graphs

40

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent

Together, we can compute 
derivatives of any function with 
respect to all its inputs, for any value 
of the input

𝜕𝑓
𝜕𝐮 = 𝐌& +𝐌 𝐮

𝜕𝑓
𝜕𝐌 = 𝐮𝐮!

𝜕𝑓
𝜕𝐱 = 𝐀& + 𝐀 𝐱 𝜕𝑓

𝜕𝐀 = 𝐱𝐱!



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

f 𝑥%, 𝑥$, 𝑥( =3
𝒊

𝑥*



Let’s see some functions as graphs
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Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥%, 𝑥$, 𝑥( =3
𝒊

𝑥*



Let’s see some functions as graphs
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Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥%, 𝑥$, 𝑥( =3
𝒊

𝑥*

We can name variables by labeling nodes
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Neural networks are differentiable computation 
units that operate on and produce tensors



Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the 

graph
– Something to think about: Given a node, can we say which nodes are inputs? 

Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the 

function at that input
– Or equivalently: How does the output change if I make a small change to the 

input?
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Forward propagation
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Forward pass: An example

48

𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

Conventions:

1. Any expression next to a node is the function it computes
2. All the variables in the expression are inputs to the node from left to right.



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦$



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢$

log 𝑢𝑢𝑣

3
*

𝑢*

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦$

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦$

This gives us the function



Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.
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Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.
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Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the 

graph
– Something to think about: Given a node, can we say which nodes are inputs? 

Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the 

function at that input
– Or equivalently: How does the output change if I make a small change to the 

input?

62



Calculus refresher: The chain rule

Suppose we have two functions 𝑓and 𝑔

We wish to compute the gradient of y = 	𝑓 𝑔 𝑥 .

We know that !"
!#
= 𝑓$ 𝑔 𝑥 ⋅ 𝑔′(𝑥)

Or equivalently: if 𝑧 = 𝑔(𝑥) and 𝑦 = 𝑓(𝑧), then

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑧
𝑑𝑥
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Or equivalently: In terms of computation graphs
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦



Or equivalently: In terms of computation graphs
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to 
compute its value given inputs, but also how to 
compute gradients
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to 
compute its value given inputs, but also how to 
compute gradients

Start from the root of the graph and work backwards.

𝑑𝑦
𝑑𝑧
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to 
compute its value given inputs, but also how to 
compute gradients

Start from the root of the graph and work backwards.

𝑑𝑦
𝑑𝑧

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑧
𝑑𝑥

When traversing an edge backwards to a new node: 
the gradient of the root with respect to that node is 
the product of the gradient at the parent with the 
derivative along that edge



A concrete example 
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑦 =
1
𝑥$



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

Let’s also explicitly write down the derivatives.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

Now, we can proceed backwards from the output

At each step, we compute the gradient of the 
function represented by the graph with respect 
to the node that we are at.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 +,-

= 1 ⋅ −
1
𝑧$ = −

1
𝑧$

Product of the gradient so far and 
the derivative computed at this step



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

1
𝑧$

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

= −
1
𝑧$ ⋅ 2𝑥 = −

2x
z$



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u$

𝑑𝑓
𝑑𝑢 = −

1
𝑢$

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥$

𝑑𝑦
𝑑𝑦 = 1

We can simplify this to get − F
G!

𝑑𝑦
𝑑𝑧 = −

1
𝑧$

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

= −
1
𝑧$ ⋅ 2𝑥 = −

2x
z$



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑓
𝑑𝑣 =

1
𝑢

Let’s also explicitly write down the derivatives. Note that 𝑓 has two 
derivatives because it has two inputs.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

At this point, we can compute the gradient 
of y with respect to z by following the edge 
from y to z.

But we can not follow the edge from y to x 
because all of x’s descendants are not 
marked as done.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 +,-

= 1 ⋅ −
𝑥
𝑧$ = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

Product of the gradient so far and 
the derivative computed at this step



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 +,-

= 1 ⋅ −
𝑥
𝑧$ = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

Now we can get to x

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example

80

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u$

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢$

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 +,.

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 /,.

	

𝑑𝑦
𝑑𝑥 = −

𝑥
𝑧$ ⋅ 2𝑥 + 1 ⋅

1
𝑧 = −

2𝑥$

𝑧$ +
1
𝑧 = −

1
𝑥$

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧$



Backpropagation, in general

After we have done the forward propagation,

Loop over the nodes in reverse topological order starting with a final goal 
node
– Compute derivatives of final goal node value with respect to each edge’s tail node

• If there are multiple outgoing edges from a node, sum up all the derivatives for the edges
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This lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns
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The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph 
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters
2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation
4. Update the parameters
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Neural networks are data-driven programs

The forward pass allows us to compute the result of computations on 
examples

The backward pass over loss functions allows us to compute the update to 
the parameters that produced the loss

Both loss functions and neural networks are computation graphs

This abstraction allows us to think of neural networks as functions (in a 
programming sense) that will be “filled in” by data
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A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns
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We have different 
design choices here
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Standard libraries offer many choices 

97

https://pytorch.org/docs/stable/nn.html

Nearly everything here is a computation graph

That is, they have the same semantics as we saw before

Over the semester, we will be looking at some 
non-standard design choices for loss functions 
and networks



Neural network architecture design typically involves 
standard building blocks
• Softmax: Convert a set of k real valued scores into a distribution over k items

• Multilayer Perceptron (commonly two layered): Abstract an unknown  function that produces a tensor

• Attention: Assign an “relevance” score or distribution over a set of items given some context

• Self-attention: Attention over a elements of a sequence, where the context is the sequence itself

• Recurrent networks: Process sequences (text, speech, time series, etc) where the computation for each time step 
depends on previous ones

• Convolution: Aggregate local features in a tensor, typically used for images

• Transformer: Encode a collection of items with self-attention + MLP

• Graph neural network: Encode graphs in a way that is aware of the graph structure
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There are standard building blocks for loss functions

• Cross entropy loss: How far is the distribution produced over a set of 
categories (via softmax) from a desired one?

• Squared loss or MSE loss: How far is a real number from a desired one?

Other losses exist too (e.g. ranking loss)
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What we saw in this lecture

A quick review of topics you should have already seen before

1. Neural networks
2. Tensors
3. Computation graphs
4. Loss functions and training
5. Design patterns

100


