
Neuro-Symbolic Modeling: Overview

Some examples of neural-symbolic integration
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Digit prediction

Examples from the MNIST digit recognition dataset

The standard task

Given an image, recognize the digit in the image

Typically modeled as a multiclass classification task

Convolutional neural networks are near perfect
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Digit prediction

Examples from the MNIST digit recognition dataset

The standard task

Given an image, recognize the digit in the image

Typically modeled as a multiclass classification task

Convolutional neural networks are near perfect

Label(      ) = 5 Label(      ) = 1

The label for the input       is 5

The label for the input       is 1

Digit(  , 5) Digit(  , 1)

These statements can be written as predicates
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Model decisions as predicates

“The model predicts a digit 𝑦 for an input image 𝑥” = Digit(𝑥, 𝑦)

We can imagine another model that predicts the sum of two digit images

“The model predicts a sum 𝑦 for input images 𝑥1, 𝑥2 ” = Sum(𝑥1, 𝑥2, 𝑦)

Sum( .    ,     ) = 6 The sum of these two digits is 6

As a predicate: Sum(  ,  , 6)
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Digits and sums

The Digit and Sum models can be both implemented as CNNs

15



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

16



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

17



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

The image 𝑥1 
has the digit 𝑧1 

If

18



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

The image 𝑥1 
has the digit 𝑧1 

The image 𝑥2 
has the digit 𝑧2

andIf

19



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

The image 𝑥1 
has the digit 𝑧1 

The image 𝑥2 
has the digit 𝑧2

The numbers 𝑧1 
and 𝑧2 add up to 𝑦 

and andIf

20



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

The image 𝑥1 
has the digit 𝑧1 

The image 𝑥2 
has the digit 𝑧2

The numbers 𝑧1 
and 𝑧2 add up to 𝑦 

The label for the sum model 
when given the images 𝑥1 
and 𝑥2 should be 𝑦  

and and thenIf

21



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

The image 𝑥1 
has the digit 𝑧1 

The image 𝑥2 
has the digit 𝑧2

The numbers 𝑧1 
and 𝑧2 add up to 𝑦 

The label for the sum model 
when given the images 𝑥1 
and 𝑥2 should be 𝑦  

and and thenIf

22



Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other

Digit(𝑥1, 𝑧1) ∧ Digit(𝑥2, 𝑧2) ∧ 𝑦 = 𝑧1 + 𝑧2   → Sum(𝑥1, 𝑥2, 𝑦)

Given data for one task and this rule, can we train a model for the other task?
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Let’s look at a few examples

1. Recognizing digits and adding them

2. Semantic role labeling

3. Using the rules of a game to play the game
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Semantic Role Labeling (SRL)

25
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What do the labels mean?
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The mouse ate the cheese when the farmer left the kitchen.

ate

Arg0 The mouse

Arg1 the cheese

ArgM-TMP when the farmer left the kitchen

left

Arg0 the farmer

Arg1 the kitchen

PropBank defines what the labels Arg0, Arg0 etc mean for each verb

Agent: eater, 
consumer

Patient: the meal

Temporal 
modifier

Agent: entity in 
motion

Starting point, 
location vacated



Semantic Role Labeling: The modeling problem

• Input: A sentence

• Output: Semantic frames for all verbs

A well studied task, large datasets in English 

– Penn Treebank data, Ontonotes annotated with PropBank roles

– Creating datasets is not easy though
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Semantic Role Labeling: The modeling problem

• Input: A sentence

• Output: Semantic frames for all verbs

The output is structured, and has constraints about the labels. For example
– Core arguments (e.g. Arg0, Arg1) cannot repeat…

…but modifiers (e.g. ArgM-TMP) can

– Certain arguments (called references, e.g. R-Arg0) can appear only if the corresponding referent 
argument exists (here, Arg0)

33

These symbolic constraints come from the task definition. And linguistic assumptions. 
We will see other constraints later



A common design of neural SRL models
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The mouse ate the cheese when the farmer left the kitchen
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The mouse ate the cheese when the farmer left the kitchen

An encoder network (e.g. BERT) to produce contextual representations

B-A0 I-A0 V B-A1 I-A1 B-AM-TMP … I-AM-TMP

Arg0 Arg1 ArgM-TMP
A BIO classifier over 
the token and verb 

(a small neural 
network) 

There is usually a CRF layer 
across these label predictions 
to introduce sequential 
dependencies between labels



A common design of neural SRL models
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The mouse ate the cheese when the farmer left the kitchen

An encoder network (e.g. BERT) to produce contextual representations

B-A0 I-A0 V B-A1 I-A1 B-AM-TMP … I-AM-TMP

Arg0 Arg1 ArgM-TMP
A BIO classifier over 
the token and verb 

(a small neural 
network) 

Each predicate treated 
separately. Here we 
see the predictions for 
the verb ate.



A common design of neural SRL models
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The mouse ate the cheese when the farmer left the kitchen

An encoder network (e.g. BERT) to produce contextual representations

B-A0 I-A0 V B-A1 I-A1 B-AM-TMP … I-AM-TMP

Arg0 Arg1 ArgM-TMP
A BIO classifier over 
the token and verb 

(a small neural 
network) 

A different commonly 
seen design involves 
span-based predictions 
instead of word-level 
ones.



A remarkable class of models!

These models are excellent in terms of predictive accuracy

– E.g. with RoBERTa embeddings, on Wall Street Journal data, we can get ~88% F-scores

– And ~80% on out of domain (Brown corpus) sentences

Impressively, they do so with no information about the output space

– No symbolic constraints prohibiting invalid labels

– No structural information about references, etc

– No frame information
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These models are excellent in terms of predictive accuracy

– E.g. with RoBERTa embeddings, on Wall Street Journal data, we can get ~88% F-scores

– And ~80% on out of domain (Brown corpus) sentences

Impressively, they do so with no information about the output space

– No symbolic constraints prohibiting invalid labels

– No structural information about references, etc

– No frame information

Is there room for knowledge in the form of symbolic constraints in neural SRL models?

– If so, how do we introduce it without sacrificing modeling convenience?
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Constraints in SRL: Unique Core Roles

∀ 𝑢, 𝑖 ∈ 𝑠, 𝑋 ∈ 𝒜𝑐𝑜𝑟𝑒 ,

𝐵𝑋 𝑢, 𝑖 → ሥ
𝑗∈𝑠
𝑗≠𝑖

¬𝐵𝑋(𝑢, 𝑗)

43
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Other constraints (informally)

The exclusively overlapping role constraint:

– In any sentence, an argument for a predicate can either be contained in, or fully 
outside, the argument for any predicate

The frame core role constraint

– A verb can have only those core arguments that are defined in PropBank

49

✓ ✓ ✗



The modeling questions

How can we incorporate such knowledge into our modeling and/or 
prediction process?

– The constraints are not dependent on any specific labeled example

– The labeled data presumably already satisfies the constraints

Can such knowledge help?
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Let’s look at a few examples

1. Recognizing digits and adding them

2. Semantic role labeling

3. Using the rules of a game to play the game
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Can we instruct a model to play a game by giving it the 
rules of the game?
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A neural network that can solve sudoku?

Can we train a neural network to solve a sudoku?

Can we do so without any training examples, with only the rules of the game (expressed 
formally)?
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A neural network that can solve sudoku?

Can we train a neural network to solve a sudoku?

Can we do so without any training examples, with only the rules of the game (expressed 
formally)?

Note: Sudoku is an example of a constraint satisfaction problem. We don’t need to train a neural network 
to solve the problem. 

For the purpose of this course, we are asking these questions to demonstrate what can be done, not 
necessarily what should be done
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Let’s look at a few examples

1. Recognizing digits and adding them

2. Semantic role labeling

3. Using the rules of a game to play the game

4. Other examples

70



Other motivating examples

Can we construct a knowledge base using facts learned from the internet and also 
knowledge about the world such as “The father of a father is a grandfather”?

Can we write a program that operates over multiple independent  large language model 
predictions to produce an output that is consistent with some pre-defined rules?

Can we train a neural network with only a limited amount of training data for a task, 
given that we have some knowledge about the task?
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