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3. Using the rules of a game to play the game
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The standard task

Given an image, recognize the digit in the image
Typically modeled as a multiclass classification task
Convolutional neural networks are near perfect
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These statements can be written as predicates
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Model decisions as predicates

“The model predicts a digit y for an inputimage x” = Digit (x, V)
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Model decisions as predicates

“The model predicts a digit y for an inputimage x” = Digit (x, V)

We can imagine another model that predicts the sum of two digit images
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Model decisions as predicates

“The model predicts a digit y for an inputimage x” = Digit (x, V)

We can imagine another model that predicts the sum of two digit images

Sum(§,{)=6 The sum of these two digits is 6

As a predicate: Sum (4, [, 6)

“The model predicts a sum y for input images x;,x; * = Sum (X1, X3, Y)
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Digits and sums

The Digit and Sum models can be both implemented as CNNs
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Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other
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and x5 should be y
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Digits and sums

The Digit and Sum models can be both implemented as CNNs

But their predictions are not independent of each other
Digit (xy, 2zy) A Digit(x,, z,) A(y =2z;+2,) > Sum(xy, X, VY)

Given data for one task and this rule, can we train a model for the other task?
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Let’s look at a few examples

1. Recognizing digits and adding them
2. Semantic role labeling

3. Using the rules of a game to play the game
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Semantic Role Labeling (SRL)

Who did what to whom, where, when, why?

The mouse ate the cheese when the farmer left the kitchen.
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Semantic Role Labeling (SRL)

Who did what to whom, where, when, why?

The mouse

ate

the cheese

when the farmer left the kitchen

ArgM-TMP

ate

Arg0 The mouse
Argl thecheese

ArgM-TMP when the farmer left the kitchen
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Semantic Role Labeling (SRL)

Who did what to whom, where, when, why?

The mouse ate the cheese when

the farmer

left

the kitchen.

ate

left

Arg0 The mouse
Argl thecheese

Arg0 thefarmer
Argl the kitchen

ArgM-TMP when the farmer left the kitchen

e

kT
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Semantic Role Labeling (SRL)

Who did what to whom, where, when, why?
The mouse ate the cheese when the farmer left the kitchen.

These semantic roles are defined by the PropBank data (Palmer et al)

A
ate left lllu':.
Arg0 The mouse Arg0 thefarmer -
Argl thecheese Argl the kitchen ,:| | F‘

ArgM-TMP when the farmer left the kitchen
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What do the labels mean?

The mouse ate the cheese when the farmer left the kitchen.

ate left
Arg0 The mouse Arg0 the farmer
Argl thecheese Argl the kitchen

ArgM-TMP when the farmer left the kitchen

PropBank defines what the labels Arg0, Arg0 etc mean for each verb l
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What do the labels mean?

The mouse ate the cheese when the farmer left the kitchen.

Agent: eater, -

consumer ate left
""""""" Arg0 The mouse ArgO the farmer
Patient: the meal <--------------- Argl the cheese Argl thekitchen

_-~-~"ArgM-TMP when the farmer left the kitchen

Temporal o
modifier

PropBank defines what the labels Arg0, Arg0 etc mean for each verb
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What do the labels mean?

The mouse ate the cheese when the farmer left the kitchen.

Agent: entity in
Agent: eater, - >

~ " motion
consumer ate left !
“““““““ Arg0 The mouse Arg0 the farmer--"’/
Patient: the meal <-------------- Argl the cheese Argl the kitchen--.__
_.---"ArgM-TMP when the farmer left the kitchen ..., Starting point,
location vacated
Temporal .~
modifier

PropBank defines what the labels Arg0, Arg0 etc mean for each verb
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Semantic Role Labeling: The modeling problem

* Input: A sentence
e Qutput: Semantic frames for all verbs

A well studied task, large datasets in English
— Penn Treebank data, Ontonotes annotated with PropBank roles
— Creating datasets is not easy though
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Semantic Role Labeling: The modeling problem

* Input: A sentence
e Qutput: Semantic frames for all verbs

The output is structured, and has constraints about the labels. For example

— Core arguments (e.g. Arg0, Argl) cannot repeat...
...but modifiers (e.g. ArgM-TMP) can

— Certain arguments (called references, e.g. R-Arg0) can appear only if the corresponding referent
argument exists (here, Arg0)

These symbolic constraints come from the task definition. And linguistic assumptions.

We will see other constraints later
33



A common design of neural SRL models

The mouse ate the cheese when the farmer left the kitchen
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A common design of neural SRL models

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer left the kitchen
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A common design of neural SRL models

A BIO classifier over
the token and verb ... B-A0 I-A0 V B-Al I-Al B-AM-TMP I-AM-TMP
(a small neural @ ™ ™
network)

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer left the kitchen
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A common design of neural SRL models

e Arg0 Argl ArgM-TMP
A BIO classifier over g g g
he token and verb |  ~"an T_at — : ‘
thetokenandverd | p-ap 1-A0 V B-Al I-Al B-AM-TMP T-AM-TMP
(a small neural | » ™
network)

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer left the kitchen
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A common design of neural SRL models

A BIO classifier over
the token and verb
(a small neural
network)

There is usually a CRF layer
across these label predictions
to introduce sequential
dependencies between labels

Arg0 Argl ArgM-TMP

1
A 1
[ \ vV |

r |,
... B-A0 I-A0 V B-Al I-Al B-AM-TMP

1
I1-AM-TMP

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer

left the kitchen
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A common design of neural SRL models

e Arg0 Argl ArgM-TMP
A BIO classifier over g g g
he token and verb |  ~"an T_at — : ‘
thetokenandverd | p-ap 1-A0 V B-Al I-Al B-AM-TMP T-AM-TMP
(a small neural | » ™
network)

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer left the kitchen

Each predicate treated
separately. Here we
see the predictions for
the verb ate.
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A common design of neural SRL models

A BIO classifier over
the token and verb
(a small neural
network)

ArgQ0 Argl ArgM-TMP

A ! |

[ 1

r |,
... B-A0 I-A0 V B-Al I-Al B-AM-TMP

1
I1-AM-TMP

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer

left the kitchen

A different commonly
seen design involves
span-based predictions
instead of word-level
ones.
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B-A0 I-A0 V B-Al I-Al B-AM-TMP I-AM-TMP

A remarkable class of models!

The mouse ate the cheese when the farmer left the kitchen

These models are excellent in terms of predictive accuracy
— E.g. with RoBERTa embeddings, on Wall Street Journal data, we can get ¥88% F-scores

— And ~80% on out of domain (Brown corpus) sentences

Impressively, they do so with no information about the output space
— No symbolic constraints prohibiting invalid labels
— No structural information about references, etc

— No frame information

41



B-A0 I-A0 V B-Al I-Al B-AM-TMP I-AM-TMP

A remarkable class of models!

An encoder network (e.g. BERT) to produce contextual representations

The mouse ate the cheese when the farmer left the kitchen

These models are excellent in terms of predictive accuracy

— E.g. with RoBERTa embeddings, on Wall Street Journal data, we can get ¥88% F-scores
— And ~80% on out of domain (Brown corpus) sentences

Impressively, they do so with no information about the output space
— No symbolic constraints prohibiting invalid labels
— No structural information about references, etc
— No frame information

Is there room for knowledge in the form of symbolic constraints in neural SRL models?

— If so, how do we introduce it without sacrificing modeling convenience?
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Constraints in SRL: Unique Core Roles

For any verb u, and a word i

Yuie€Es
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Constraints in SRL: Unique Core Roles

For any verb u, and a word i

YUuieEs

By (u,i)

If a model labels the it word as
the beginning of a label X
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Constraints in SRL: Unique Core Roles

for any core argument X (i.e. one

For any verb u, and a word i of A0, A1, A2, A3, A4, AS)
BX(ul l)

If a model labels the it word as
the beginning of a label X
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Constraints in SRL: Unique Core Roles

for any core argument X (i.e. one
For any verb u, and a word i of AO, A1, A2, A3, A4, A5)

VUurie€s X €A pre

Bl ) = /\

JES
JEX
If a model labels the it" word as

the beginning of a label X
Then, for any other word j
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Constraints in SRL: Unique Core Roles

for any core argument X (i.e. one
For any verb u, and a word i of AO, A1, A2, A3, A4, A5)

VUurie€s X €A pre

By(u,0) > [\ FBx(u))

JES The model cannot predict
JFl that it is the beginning of the
If a model labels the it" word as same label

the beginning of a label X
Then, for any other word j
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Constraints in SRL: Unique Core Roles

for any core argument X (i.e. one
For any verb u, and a word i of AO, A1, A2, A3, A4, A5)

VUurie€s X €A pre

By(u,i) - /\ —Bx(u, j)

JES The model cannot predict
JFl that it is the beginning of the
If a model labels the it" word as same label

the beginning of a label X
Then, for any other word j
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Other constraints (informally)

The exclusively overlapping role constraint:

— In any sentence, an argument for a predicate can either be contained in, or fully
outside, the argument for any predicate

v v X

The frame core role constraint

— A verb can have only those core arguments that are defined in PropBank



The modeling questions

How can we incorporate such knowledge into our modeling and/or
prediction process?

— The constraints are not dependent on any specific labeled example
— The labeled data presumably already satisfies the constraints

Can such knowledge help?
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Let’s look at a few examples

1. Recognizing digits and adding them
2. Semantic role labeling

3. Using the rules of a game to play the game
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Can we instruct a model to play a game by giving it the
rules of the game?

Example: sudoku
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Example: sudoku
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Example: sudoku

1. Each cell can be filled a digit from 1to 9
2. Some cells are already filled in

3. All digits from 1-9 should show up exactly once in each row
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Can we instruct a model to play a game by giving it the
rules of the game?

J . 1. Each cell can be filled a digit from 1to 9

2. Some cells are already filled in

J 3. All digits from 1-9 should show up exactly once in each row

J We have nine rows in all

F

Example: sudoku
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Can we instruct a model to play a game by giving it the

rules of the game?

B

N

N

F

Example: sudoku

. Each cell can be filled a digit from 1to 9
. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row

. All digits from 1-9 should show up exactly once in each column
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Can we instruct a model to play a game by giving it the

rules of the game?
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b
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Example: sudoku

. Each cell can be filled a digit from 1to 9
. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row

. All digits from 1-9 should show up exactly once in each column
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Can we instruct a model to play a game by giving it the

rules of the game?
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Example: sudoku

. Each cell can be filled a digit from 1to 9
. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row

. All digits from 1-9 should show up exactly once in each column
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Can we instruct a model to play a game by giving it the

rules of the game?
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Example: sudoku

. Each cell can be filled a digit from 1to 9
. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row

. All digits from 1-9 should show up exactly once in each column

We have nine columns in all
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Can we instruct a model to play a game by giving it the

rules of the game?
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Example: sudoku

Each cell can be filled a digit from 1to 9

. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row
. All digits from 1-9 should show up exactly once in each column

. All digits from 1-9 should show up exactly once in each 3x3 block
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Can we instruct a model to play a game by giving it the

rules of the game?
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Example: sudoku

Each cell can be filled a digit from 1to 9

. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row
. All digits from 1-9 should show up exactly once in each column

. All digits from 1-9 should show up exactly once in each 3x3 block
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Can we instruct a model to play a game by giving it the

rules of the game?

B
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Example: sudoku

Each cell can be filled a digit from 1to 9

. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row
. All digits from 1-9 should show up exactly once in each column

. All digits from 1-9 should show up exactly once in each 3x3 block
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Can we instruct a model to play a game by giving it the

rules of the game?
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Example: sudoku

Each cell can be filled a digit from 1to 9

. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row
. All digits from 1-9 should show up exactly once in each column

. All digits from 1-9 should show up exactly once in each 3x3 block

We have nine blocks in all
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Can we instruct a model to play a game by giving it the

rules of the game?

B

N

N

F

Example: sudoku

Each cell can be filled a digit from 1to 9

. Some cells are already filled in
. All digits from 1-9 should show up exactly once in each row
. All digits from 1-9 should show up exactly once in each column

. All digits from 1-9 should show up exactly once in each 3x3 block
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A neural network that can solve sudoku?

Can we train a neural network to solve a sudoku?

Can we do so without any training examples, with only the rules of the game (expressed
formally)?
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A neural network that can solve sudoku?

Can we train a neural network to solve a sudoku?

Can we do so without any training examples, with only the rules of the game (expressed
formally)?

Note: Sudoku is an example of a constraint satisfaction problem. We don’t need to train a neural network
to solve the problem.

For the purpose of this course, we are asking these questions to demonstrate what can be done, not
necessarily what should be done
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Let’s look at a few examples

1. Recognizing digits and adding them
2. Semantic role labeling
3. Using the rules of a game to play the game

4. Other examples
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Other motivating examples

Can we construct a knowledge base using facts learned from the internet and also
knowledge about the world such as “The father of a father is a grandfather”?

Can we write a program that operates over multiple independent large language model
predictions to produce an output that is consistent with some pre-defined rules?

Can we train a neural network with only a limited amount of training data for a task,
given that we have some knowledge about the task?
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