
Logic as Loss: Semantic loss



The idea of the “logic as loss” framework

1

What we want of our models

Minimize

Satisfy a set of invariant properties 
(perhaps including properties about specific examples) 

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms 
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$  is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝#  over the atoms

Our goal: 
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and 
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting
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What are some desirable 
properties of the loss 
function 𝐿(𝛼, 𝑝)?

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms 
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$  is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝#  over the atoms

Our goal: 
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and 
associated probabilities) that assigns labels satisfying the sentence 𝛼



What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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Let us brainstorm



What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)

4

Let us brainstorm

Semantic loss: An axiomatic approach

Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018



Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint
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The Differentiability Axiom

We want to be able to take gradients of the loss function

The differentiability axiom: For any fixed 𝛼, the semantic loss L(𝛼, 𝐩) is 
monotone in each probability in 𝐩, and is differentiable.
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What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true
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probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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Logical entailments

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples: 
𝛼 = 𝑋! ∧ 𝑋"  and    𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋"  and    𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the losses 𝐿(𝛼, 𝑝)  and 𝐿(𝛽, 𝑝) associated with these sentences, 
irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we 
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝  for any value of 𝑝.
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The Monotonicity Axiom

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples: 
𝛼 = 𝑋! ∧ 𝑋"  and    𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋"  and    𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the relative values of the losses 𝐿(𝛼, 𝑝)  and 𝐿(𝛽, 𝑝) associated with these 
sentences, irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we 
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝  for any value of 𝑝.
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What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same
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Monotonicity Axiom → Semantics 

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same
That is, both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

Then, L α, p = L β, p  for any value of p

For logically equivalent statements any loss function that satisfies monotonicity will have equal loss values
In other words, the loss is not affected by syntactic variations in how the constraints are written

24



Monotonicity Axiom → Semantics 

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same
That is, both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

Then, L α, p = L β, p  for any value of p

For logically equivalent statements any loss function that satisfies monotonicity will have equal loss values
In other words, the loss is not affected by syntactic variations in how the constraints are written

Another consequence of monotonicity: L α, p > 0 for any 𝛼, 𝐩
Exercise: Prove this
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What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$  
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence
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Binary vector: We can write the assignment as the vector [1,1,0]

(We could even interpret these as probabilities that each variable is true)
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each variable is true



A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$  
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Binary vector: We can write the assignment as the vector [1,1,0]

(We could even interpret these as probabilities that each variable is true)

Logical sentence: We can also write the assignment as the sentence 𝑋! ∧ 𝑋" ∧ ¬𝑋#
There is only one assignment that makes this conjunction true, and that is the above one
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How should the loss handle a perfect match?

Consider an assignment to a set of Boolean variables (also called a state)  
Let 𝑥 denote its representation as a binary vector (to be interpreted as a probability)
Let 𝛼 denote its representation as a logical sentence

What can we say about the loss 𝐿 𝛼, 𝑥 ?
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The Identity Axiom

Consider an assignment to a set of Boolean variables (also called a state) 
Let 𝑥 denote its representation as a binary vector (to be interpreted as a probability)
Let 𝛼 denote its representation as a logical sentence

What can we say about the loss 𝐿 𝛼, 𝑥 ?

Intuition: The vector 𝑥 satisfies the constraint 𝛼. So it should have no loss

The Identity axiom: For any state 𝑥, there is zero semantic loss between its representation as a 
sentence and its representation as a deterministic vector. ∀𝑥, 𝐿 𝑥, 𝑥 = 0.
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What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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Labeled data as literals

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦
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Suppose we have a model producing a probability 𝑝 for such propositions
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Labeled data as literals

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦

Suppose we have a model producing a probability 𝑝 for such propositions

What do we expect from the losses L X, p  and L ¬X, p ?
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The Label-Literal Correspondence Axiom

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦

Suppose we have a model producing a probability 𝑝 for such propositions

What do we expect from the losses 𝐿 𝑋, 𝑝  and 𝐿 ¬𝑋, 𝑝 ?

Label-literal correspondence axiom: 
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝
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What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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A consequence of the label-literal correspondence axiom

If it is true that: 
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have 

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝#  over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

42



A consequence of the label-literal correspondence axiom

If it is true that: 
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have 

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝#  over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

43



A consequence of the label-literal correspondence axiom

If it is true that: 
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have 

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝#  over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

44



A consequence of the label-literal correspondence axiom

If it is true that: 
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have 

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝#  over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

45



What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to 
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the 
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals 

(accounting for polarity appropriately)
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Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint
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Semantic loss

The only function that satisfies these axioms up to a multiplicative constant 
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	
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𝛼 (equivalently, an assignment 
to the variables that makes 𝛼 
true)
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Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint
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Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively 
being true
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Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively 
being true

Let us work out the semantic loss L 𝛼, 𝐩
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table for this formula
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• Semantic loss
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– Conjunction
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Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively 
being true
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These rows contribute to the loss. Any probability 
allocated the other row is undesirable because it does 
not satisfy the formula. 



Summary: Semantic loss

An axiomatic approach for converting logic to loss functions
• Produces differentiable losses 
• Equivalent to cross-entropy when we have labeled examples

Key technical component
• Sum over the probabilities of assignments that satisfy the Boolean expression
• In practice: compile to tractable representations, and if this produces a small enough expression, we can 

perform forward and backward passes using standard tools
• Other approaches possible. E.g. approximation

Pros and cons
• Well defined semantics, syntactic variations don’t matter
• But, could hide a difficult computational problem in the innermost loop of gradient based optimization
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