
Logic as Loss: Semantic loss

The idea of the “logic as loss” framework

1

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

The idea of the “logic as loss” framework

2

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss
Let us formally state the setting

What are some desirable
properties of the loss
function 𝐿(𝛼, 𝑝)?

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

3

Let us brainstorm

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

4

Let us brainstorm

Semantic loss: An axiomatic approach

Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint

5

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint

6

The Differentiability Axiom

We want to be able to take gradients of the loss function

The differentiability axiom: For any fixed 𝛼, the semantic loss L(𝛼, 𝐩) is
monotone in each probability in 𝐩, and is differentiable.

7

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

8
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

Logical entailments

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples:
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the losses 𝐿(𝛼, 𝑝) and 𝐿(𝛽, 𝑝) associated with these sentences,
irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 for any value of 𝑝.

9

Logical entailments

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples:
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the losses 𝐿(𝛼, 𝑝) and 𝐿(𝛽, 𝑝) associated with these sentences,
irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 for any value of 𝑝.

10

Logical entailments

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples:
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the losses 𝐿(𝛼, 𝑝) and 𝐿(𝛽, 𝑝) associated with these sentences,
irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 for any value of 𝑝.

11

Logical entailments

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples:
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the relative values of the losses 𝐿(𝛼, 𝑝) and 𝐿(𝛽, 𝑝) associated with these
sentences, irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 for any value of 𝑝.

12

Logical entailments

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples:
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the relative values of the losses 𝐿(𝛼, 𝑝) and 𝐿(𝛽, 𝑝) associated with these
sentences, irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 for any value of 𝑝.

13

The Monotonicity Axiom

Suppose we have two sentences in logic 𝛼 and 𝛽 such that 𝛼 ⊨ 𝛽

Some examples:
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋!
𝛼 = 𝑋! ∧ 𝑋" and 𝛽 = 𝑋! → 𝑋"

In each case, whenever 𝛼 is true, so is 𝛽. That is 𝛼 ⊨ 𝛽.

Can we expect anything about the relative values of the losses 𝐿(𝛼, 𝑝) and 𝐿(𝛽, 𝑝) associated with these
sentences, irrespective of the value of 𝑝?

Intuition: Since 𝛼 is a stricter condition than 𝛽, violating it should face a stronger penalty. That is, we
would like 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 .

The monotonicity axiom: If 𝛼 ⊨ 𝛽, then 𝐿 𝛼, 𝑝 ≥ 𝐿 𝛽, 𝑝 for any value of 𝑝.

14

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

15
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

16

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

17

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

18

𝑋! 𝑋" 𝑋# 𝑋! → (𝑋"→ 𝑋#) ¬𝑋# → ¬ 𝑋! ∧ 𝑋"
⊤ ⊤ ⊤ ⊤ ⊤

⊤ ⊤ ⊥ ⊥ ⊥

⊤ ⊥ ⊤ ⊤ ⊤

⊤ ⊥ ⊥ ⊤ ⊤

⊥ ⊤ ⊤ ⊤ ⊤

⊥ ⊤ ⊥ ⊤ ⊤

⊥ ⊥ ⊤ ⊤ ⊤

⊥ ⊥ ⊥ ⊤ ⊤

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

In these cases, we write 𝛼 ≡ 𝛽 and say “𝛼 is logically equivalent to 𝛽”

19

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

In these cases, we write 𝛼 ≡ 𝛽 and say “𝛼 is logically equivalent to 𝛽”

20

both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

In these cases, we write 𝛼 ≡ 𝛽 and say “𝛼 is logically equivalent to 𝛽”

21

L α, p ≥ L β, p
for any value of p

both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

In these cases, we write 𝛼 ≡ 𝛽 and say “𝛼 is logically equivalent to 𝛽”

22

L α, p ≥ L β, p
for any value of p

L 𝛽, p ≥ L 𝛼, p
for any value of p

both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

and

A consequence of the monotonicity axiom

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same

Some examples:
𝛼 = 𝑋! → 𝑋" and 𝛽 = ¬𝑋! ∨ 𝑋"
𝛼 = 𝑋! → (𝑋"→ 𝑋#) and 𝛽 = ¬𝑋# → ¬ 𝑋! ∧ 𝑋"

In these cases, we write 𝛼 ≡ 𝛽 and say “𝛼 is logically equivalent to 𝛽”

23

L α, p ≥ L β, p
for any value of p

L 𝛽, p ≥ L 𝛼, p
for any value of p L α, p = L β, p

both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

and ⇒

Monotonicity Axiom → Semantics

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same
That is, both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

Then, L α, p = L β, p for any value of p

For logically equivalent statements any loss function that satisfies monotonicity will have equal loss values
In other words, the loss is not affected by syntactic variations in how the constraints are written

24

Monotonicity Axiom → Semantics

Consider two sentences 𝛼 and 𝛽 that are syntactically different, but semantically the same
That is, both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼

Then, L α, p = L β, p for any value of p

For logically equivalent statements any loss function that satisfies monotonicity will have equal loss values
In other words, the loss is not affected by syntactic variations in how the constraints are written

Another consequence of monotonicity: L α, p > 0 for any 𝛼, 𝐩
Exercise: Prove this

25

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

26
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence

27

A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence

Example: Consider 𝑋! = ⊤, 𝑋" = ⊤, 𝑋# =	⊥ . That is, 𝑥 = ⊤, ⊤, ⊥

28

A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence

Example: Consider 𝑋! = ⊤, 𝑋" = ⊤, 𝑋# =	⊥ . That is, 𝑥 = ⊤, ⊤, ⊥
Binary vector: We can write the assignment as the vector [1,1,0]

(We could even interpret these as probabilities that each variable is true)

29

A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence

Example: Consider 𝑋! = ⊤, 𝑋" = ⊤, 𝑋# =	⊥ . That is, 𝑥 = ⊤, ⊤, ⊥
Binary vector: We can write the assignment as the vector [1,1,0]

(We could even interpret these as probabilities that each variable is true)

30

This can be interpreted
as a probability that
each variable is true

A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence

Example: Consider 𝑋! = ⊤, 𝑋" = ⊤, 𝑋# =	⊥ . That is, 𝑥 = ⊤, ⊤, ⊥
Binary vector: We can write the assignment as the vector [1,1,0]

(We could even interpret these as probabilities that each variable is true)

Logical sentence: We can also write the assignment as the sentence 𝑋! ∧ 𝑋" ∧ ¬𝑋#
There is only one assignment that makes this conjunction true, and that is the above one

31

A bit of notation

Suppose we have a set of Boolean variables 𝑋 = 𝑋!, 𝑋", ⋯𝑋$
We have a specific assignment of truth values to these variables, denoted by 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥$

We can write this assignment as a binary vector or as a logical sentence

Example: Consider 𝑋! = ⊤, 𝑋" = ⊤, 𝑋# =	⊥ . That is, 𝑥 = ⊤, ⊤, ⊥
Binary vector: We can write the assignment as the vector [1,1,0]

(We could even interpret these as probabilities that each variable is true)

Logical sentence: We can also write the assignment as the sentence 𝑋! ∧ 𝑋" ∧ ¬𝑋#
There is only one assignment that makes this conjunction true, and that is the above one

32

Essentially, all three are
saying the same thing

How should the loss handle a perfect match?

Consider an assignment to a set of Boolean variables (also called a state)
Let 𝑥 denote its representation as a binary vector (to be interpreted as a probability)
Let 𝛼 denote its representation as a logical sentence

What can we say about the loss 𝐿 𝛼, 𝑥 ?

33

How should the loss handle a perfect match?

Consider an assignment to a set of Boolean variables (also called a state)
Let 𝑥 denote its representation as a binary vector (to be interpreted as a probability)
Let 𝛼 denote its representation as a logical sentence

What can we say about the loss 𝐿 𝛼, 𝑥 ?

Intuition: The vector 𝑥 satisfies the constraint 𝛼. So it should have no loss

34

The Identity Axiom

Consider an assignment to a set of Boolean variables (also called a state)
Let 𝑥 denote its representation as a binary vector (to be interpreted as a probability)
Let 𝛼 denote its representation as a logical sentence

What can we say about the loss 𝐿 𝛼, 𝑥 ?

Intuition: The vector 𝑥 satisfies the constraint 𝛼. So it should have no loss

The Identity axiom: For any state 𝑥, there is zero semantic loss between its representation as a
sentence and its representation as a deterministic vector. ∀𝑥, 𝐿 𝑥, 𝑥 = 0.

35

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

36
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

Labeled data as literals

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦

37

Labeled data as literals

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦

Suppose we have a model producing a probability 𝑝 for such propositions

38

Labeled data as literals

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦

Suppose we have a model producing a probability 𝑝 for such propositions

What do we expect from the losses L X, p and L ¬X, p ?

39

The Label-Literal Correspondence Axiom

Recall that labeled a labeled example is a proposition
The statement: “Example 𝑥 has label 𝑦” is same as the proposition Label 𝑥, 𝑦
Similarly, “Example 𝑥 doesn’t have the label 𝑦” is the negation ¬Label 𝑥, 𝑦

Suppose we have a model producing a probability 𝑝 for such propositions

What do we expect from the losses 𝐿 𝑋, 𝑝 and 𝐿 ¬𝑋, 𝑝 ?

Label-literal correspondence axiom:
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

40

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

41
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

A consequence of the label-literal correspondence axiom

If it is true that:
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝# over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

42

A consequence of the label-literal correspondence axiom

If it is true that:
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝# over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

43

A consequence of the label-literal correspondence axiom

If it is true that:
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝# over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

44

A consequence of the label-literal correspondence axiom

If it is true that:
𝐿 𝑋, 𝑝 ∝ − log 𝑝

𝐿 ¬𝑋, 𝑝 ∝ − log 1 − 𝑝

Then, for any state 𝑥 (i.e. a conjunction of literals), we have

𝐿 𝑥, 𝐩 ∝ − H
%:'⊨)%

log 𝑝% − H
%:'⊨¬)%

log 1 − 𝑝% 	

Let us see an example. Suppose 𝑥 = 𝑋! ∧ ¬𝑋" ∧ 𝑋#

For any probability 𝐩 = 𝑝!, 𝑝", 𝑝# over the three literals we have

𝐿 𝑥, 𝐩 ∝ − log 𝑝! − log 𝑝# − log(1 − 𝑝")

45

What are some desirable properties of the loss function 𝐿(𝛼, 𝐩)?

1. The loss should be sub-differentiable

2. For two sentences 𝛼 and 𝛽, if 𝛼 ⊨ 𝛽, we want 𝐿 𝛼, 𝐩 ≥ 𝐿 𝛽, 𝐩
→ Logically equivalent sentences should have equal losses

3. There should be zero loss between a conjunction of literals and distribution corresponding to
the hard assignment of variables that makes the conjunction true

4. For a predicate corresponding to a labeled predicate, the loss should be negative log of the
probability of the predicate
→ For a conjunction of literals, the loss is the negative sum of the probabilities of the literals

(accounting for polarity appropriately)

46
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint

47

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

48

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

49

A statement in logic
using variables 𝑋!, 𝑋", ⋯

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

50

A vector of probabilities
for each of 𝑋!, 𝑋", ⋯
being true, to be
produced by some
neural network

A statement in logic
using variables 𝑋!, 𝑋", ⋯

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

51

𝑥 is a model for the statement
𝛼 (equivalently, an assignment
to the variables that makes 𝛼
true)

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

52

The variable 𝑋$ is true in 𝑥

𝑥 is a model for the statement
𝛼 (equivalently, an assignment
to the variables that makes 𝛼
true)

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

53

The variable 𝑋$ is false in 𝑥The variable 𝑋$ is true in 𝑥

𝑥 is a model for the statement
𝛼 (equivalently, an assignment
to the variables that makes 𝛼
true)

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

54

For all variables that are
entailed by the model, the
product of the probabilities that
they are true

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

55

For all variables that are
contradicted by the model, the
product of the probabilities that
they are falseFor all variables that are

entailed by the model, the
product of the probabilities that
they are true

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

56

The probability assigned by the
model to this particular
assignment of the variables

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

57

Sum over every possible model
for the statement 𝛼. That is, sum
over every assignment to the
variables that makes 𝛼	true.

The probability assigned by the
model to this particular
assignment of the variables

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

58

Probability of generating some
state (i.e. assignment) that
satisfies the constraint 𝛼

Semantic loss

The only function that satisfies these axioms up to a multiplicative constant
is the semantic loss, defined as

𝐿 𝛼, 𝐩 ∝ − log-
/⊨0

.
1:/⊨3'

𝑝1 ⋅ .
1:/⊨¬3'

(1 − 𝑝1)	

59

Semantic loss = Negative log probability of generating some state
(i.e. assignment) that satisfies the constraint 𝛼

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint

60

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

61

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩

62

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The conjunction has only one satisfying assignment: 𝑋! = ⊤, 𝑋" = ⊤

The summation has only one element

63

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The conjunction has only one satisfying assignment: 𝑋! = ⊤, 𝑋" = ⊤

The summation has only one element

Both variables in the satisfying assignment are true.

64

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The conjunction has only one satisfying assignment: 𝑋! = ⊤, 𝑋" = ⊤

The summation has only one element

Both variables in the satisfying assignment are true.

𝐿 𝛼, 𝐩 ∝ − log 𝑝!𝑝"

65

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The conjunction has only one satisfying assignment: 𝑋! = ⊤, 𝑋" = ⊤

The summation has only one element

Both variables in the satisfying assignment are true.

𝐿 𝛼, 𝐩 ∝ − log 𝑝!𝑝"

66

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊥

Let us examine the truth
table for this formula

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The conjunction has only one satisfying assignment: 𝑋! = ⊤, 𝑋" = ⊤

The summation has only one element

Both variables in the satisfying assignment are true.

𝐿 𝛼, 𝐩 ∝ − log 𝑝!𝑝"

67

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! 𝑋" 𝛼 probability

⊤ ⊤ ⊤ 𝑝!𝑝"

⊤ ⊥ ⊥ 𝑝! 1 − 𝑝"

⊥ ⊤ ⊥ 𝑝" 1 − 𝑝!

⊥ ⊥ ⊥ 1 − 𝑝! 1 − 𝑝"

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The conjunction has only one satisfying assignment: 𝑋! = ⊤, 𝑋" = ⊤

The summation has only one element

Both variables in the satisfying assignment are true.

𝐿 𝛼, 𝐩 ∝ − log 𝑝!𝑝"

68

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! 𝑋" 𝛼 probability

⊤ ⊤ ⊤ 𝑝!𝑝"

⊤ ⊥ ⊥ 𝑝! 1 − 𝑝"

⊥ ⊤ ⊥ 𝑝" 1 − 𝑝!

⊥ ⊥ ⊥ 1 − 𝑝! 1 − 𝑝"
Only this row contributes to the loss. Any probability
allocated other rows is undesirable because they do
not satisfy the formula.

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Example: The exactly-one constraint

69

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

70

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩

71

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments (i.e. three models):

72

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! = ⊤, 𝑋" = ⊤ 𝑋! =⊥, 𝑋" = ⊤ 𝑋! =⊥, 𝑋" =⊥

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments (i.e. three models):

73

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! = ⊤, 𝑋" = ⊤ 𝑋! =⊥, 𝑋" = ⊤ 𝑋! =⊥, 𝑋" =⊥

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

We can equivalently rewrite the three models for 𝛼	as these terms

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments (i.e. three models):

74

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! = ⊤, 𝑋" = ⊤ 𝑋! =⊥, 𝑋" = ⊤ 𝑋! =⊥, 𝑋" =⊥

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

Let us examine each model separately and construct the innermost product

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments:

75

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"𝑋! ∧ 𝑋" ⊨ 𝑋!
and

𝑋! ∧ 𝑋" ⊨ 𝑋"
𝑝!𝑝"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments:

76

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

¬𝑋! ∧ 𝑋" ⊨ ¬𝑋!
and

¬𝑋! ∧ 𝑋" ⊨ 𝑋"
(1 − 𝑝!)	𝑝"

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

𝑝!𝑝"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments:

77

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

¬𝑋! ∧ ¬𝑋"⊨ ¬𝑋!
and

¬𝑋! ∧ ¬𝑋"⊨ ¬𝑋"
(1 − 𝑝!) 1 − 𝑝"(1 − 𝑝!)	𝑝"

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

𝑝!𝑝"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments:

78

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑝!𝑝" +	(1 − 𝑝!)	𝑝" + (1 − 𝑝!) 1 − 𝑝"

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments:

79

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝑝!𝑝" + 	1 − 𝑝!

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments:

80

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝐿 𝛼, 𝐩 ∝ −log(𝑝!𝑝" + 	1 − 𝑝!)	

𝑋! ∧ 𝑋" ¬𝑋! ∧ 𝑋" ¬𝑋! ∧ ¬𝑋"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments. Shown in the table here

81

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝐿 𝛼, 𝐩 ∝ −log(𝑝!𝑝" + 	1 − 𝑝!)	

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments. Shown in the table here

82

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝐿 𝛼, 𝐩 ∝ −log(𝑝!𝑝" + 	1 − 𝑝!)	

𝑋! 𝑋" 𝛼 probability

⊤ ⊤ ⊤ 𝑝!𝑝"

⊤ ⊥ ⊥ 𝑝! 1 − 𝑝"

⊥ ⊤ ⊤ 𝑝" 1 − 𝑝!

⊥ ⊥ ⊤ 1 − 𝑝! 1 − 𝑝"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose we have some neural network that produces probabilities 𝑝! and 𝑝" for 𝑋! and 𝑋" respectively
being true

Let us work out the semantic loss L 𝛼, 𝐩
The implication has three satisfying assignments. Shown in the table here

83

𝐿 𝛼, 𝐩 ∝ −log8
&⊨(

9
$:&⊨*!

𝑝$ ⋅ 9
$:&⊨¬*!

(1 − 𝑝$)	

𝐿 𝛼, 𝐩 ∝ −log(𝑝!𝑝" + 	1 − 𝑝!)	

𝑋! 𝑋" 𝛼 probability

⊤ ⊤ ⊤ 𝑝!𝑝"

⊤ ⊥ ⊥ 𝑝! 1 − 𝑝"

⊥ ⊤ ⊤ 𝑝" 1 − 𝑝!

⊥ ⊥ ⊤ 1 − 𝑝! 1 − 𝑝"
These rows contribute to the loss. Any probability
allocated the other row is undesirable because it does
not satisfy the formula.

Summary: Semantic loss

An axiomatic approach for converting logic to loss functions
• Produces differentiable losses
• Equivalent to cross-entropy when we have labeled examples

Key technical component
• Sum over the probabilities of assignments that satisfy the Boolean expression
• In practice: compile to tractable representations, and if this produces a small enough expression, we can

perform forward and backward passes using standard tools
• Other approaches possible. E.g. approximation

Pros and cons
• Well defined semantics, syntactic variations don’t matter
• But, could hide a difficult computational problem in the innermost loop of gradient based optimization

84

