
Logic as Loss: Semantic loss

The idea of the “logic as loss” framework

1

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

The idea of the “logic as loss” framework

2

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss
Let us formally state the setting

What are some desirable
properties of the loss
function 𝐿(𝛼, 𝑝)?

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Knowledge Compilation
– Example: The exactly-one constraint

3

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

Is there a catch?

4

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

5

This term requires us to
accumulate quantities computed
for every satisfying assignment for
the formula 𝛼

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

6

This term requires us to
accumulate quantities computed
for every satisfying assignment for
the formula 𝛼

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

7

This term requires us to
accumulate quantities computed
for every satisfying assignment for
the formula 𝛼

Is this a problem? Have we seen this before?

Weighted model counting

8

Recall: model = a satisfying assignment to a propositional formula

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

9

Recall: model = a satisfying assignment
to a propositional formula

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

10

Recall: model = a satisfying assignment
to a propositional formula

Example: 𝑋! → 𝑋"

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

11

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Example: 𝑋! → 𝑋"

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

12

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Example: 𝑋! → 𝑋"

Not a model
for this formula

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

13

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Example: 𝑋! → 𝑋"

Number of models = 3

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

14

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Example: 𝑋! → 𝑋"

Number of models = 3

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

15

Recall: model = a satisfying assignment
to a propositional formula

Example: 𝑋! → 𝑋"

Number of models = 3

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

16

Recall: model = a satisfying assignment
to a propositional formula

Example: 𝑋! → 𝑋"

𝑋 𝑤(𝑋) 𝑤(¬𝑋)
𝑋! 3 2

𝑋" 5 7

Variable weights

Number of models = 3

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

17

Recall: model = a satisfying assignment
to a propositional formula

Example: 𝑋! → 𝑋"

Number of models = 3

𝑋 𝑤(𝑋) 𝑤(¬𝑋)
𝑋! 3 2

𝑋" 5 7

Variable weights

𝑋! 𝑋" 𝛼
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

18

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼 weight

⊤ ⊤ ⊤ 3×5 = 15

⊤ ⊥ ⊥ 3×7 = 21	
⊥ ⊤ ⊤ 2×5 = 10

⊥ ⊥ ⊤ 2×7 = 14

Example: 𝑋! → 𝑋"

Number of models = 3

𝑋 𝑤(𝑋) 𝑤(¬𝑋)
𝑋! 3 2

𝑋" 5 7

Variable weights

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

19

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼 weight

⊤ ⊤ ⊤ 3×5 = 15

⊤ ⊥ ⊥ 3×7 = 21	
⊥ ⊤ ⊤ 2×5 = 10

⊥ ⊥ ⊤ 2×7 = 14

Example: 𝑋! → 𝑋"

𝑋 𝑤(𝑋) 𝑤(¬𝑋)
𝑋! 3 2

𝑋" 5 7

Variable weights

Number of models = 3

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

20

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼 weight

⊤ ⊤ ⊤ 3×5 = 15

⊤ ⊥ ⊥ 3×7 = 21	
⊥ ⊤ ⊤ 2×5 = 10

⊥ ⊥ ⊤ 2×7 = 14

Example: 𝑋! → 𝑋"

𝑋 𝑤(𝑋) 𝑤(¬𝑋)
𝑋! 3 2

𝑋" 5 7

Variable weights

Number of models = 3

Weighted model count = 15 + 10 + 14 = 39

Weighted model counting

Model counting: How many satisfying
assignments does the propositional formula
have?

This is a #P problem
Weighted model counting

Each assignment to a variable has weights
The weight of a model is the product of the
variable weights
Our goal is to add up model weights of all
satisfying assignments
Also #P

21

Recall: model = a satisfying assignment
to a propositional formula

𝑋! 𝑋" 𝛼 weight

⊤ ⊤ ⊤ 3×5 = 15

⊤ ⊥ ⊥ 3×7 = 21	
⊥ ⊤ ⊤ 2×5 = 10

⊥ ⊥ ⊤ 2×7 = 14

Example: 𝑋! → 𝑋"

𝑋 𝑤(𝑋) 𝑤(¬𝑋)
𝑋! 3 2

𝑋" 5 7

Variable weights

Number of models = 3

Weighted model count = 15 + 10 + 14 = 39

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

22

This term requires us to
accumulate quantities computed
for every satisfying assignment for
the formula 𝛼

Is this a problem? Have we seen this before?

Computing the semantic loss requires us to perform weighted model counting

Intractable in the worst case, but tractable subsets of logic exist

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Knowledge Compilation
– Example: The exactly-one constraint

23

A model counting example

24

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%)
How many satisfying assignments does this formula have?

A model counting example

25

How many satisfying assignments does this formula have?

𝑋! 𝑋" 𝑋% 𝛼
⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

One way to count:
Enumerate all satisfying assignments

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%)

𝑋! 𝑋" 𝑋% 𝛼
⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

A model counting example

26

How many satisfying assignments does this formula have?

One way to count:
Enumerate all satisfying assignments

The formula has two
satisfying assignments𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%)

𝑋! 𝑋" 𝑋% 𝛼
⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

A model counting example

27

How many satisfying assignments does this formula have?

One way to count:
Enumerate all satisfying assignments

Can we do better?
In the worst case, not really

The formula has two
satisfying assignments𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%)

𝑋! 𝑋" 𝑋% 𝛼
⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

A model counting example

28

How many satisfying assignments does this formula have?

One way to count:
Enumerate all satisfying assignments

Can we do better?
In the worst case, not really

But are there easy cases?

The formula has two
satisfying assignments𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%)

An equivalent expression

29

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

We can write this as an expression tree

30

𝑋" ¬𝑋%

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

We can write this as an expression tree

31

¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

We can write this as an expression tree

32

¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

We can write this as an expression tree

33

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

This expression is in the Negation Normal Form

34

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
The only negations are in the leaves

That is, the leaves are literals

All other nodes are either conjunctions
or disjunctions

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

This expression is Decomposable

35

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every conjunction, the conjuncts do
not share any variables

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form

This expression is Decomposable

36

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every conjunction, the conjuncts do
not share any variables

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form

No overlap in variables on two sides

This expression is Decomposable

37

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every conjunction, the conjuncts do
not share any variables

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form

No overlap in variables on two sides

This expression is Decomposable

38

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every conjunction, the conjuncts do
not share any variables

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form

No overlap in variables on two sides

This expression is deterministic

39

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every disjunction, the disjuncts
contradict each other

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable

This expression is deterministic

40

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every disjunction, the disjuncts
contradict each other

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable

This expression is deterministic

41

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧
For every disjunction, the disjuncts
contradict each other

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable

The left side of the disjunction is 𝑋" ∧ ¬𝑋%

The right side is ¬𝑋" ∧ 𝑋%

Both these expressions cannot be simultaneously true
(you should verify this)

We have a new normal form

42

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

With all these three properties, this expression is
in a form called deterministic decomposable
negation normal form (d-DNNF).

We have seen normal forms of
propositional formulas before

Disjunctive normal forms,
Conjunctive normal forms

Darwiche, Adnan, and Pierre Marquis. "A knowledge compilation map." Journal of Artificial Intelligence Research 17 (2002)

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

What makes a d-DNNF special?

43

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

It allows us to perform model counting and
weighted model counting with one traversal of
the tree

Let’s see how

What makes a d-DNNF special?

44

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

It allows us to perform model counting and
weighted model counting with one traversal of
the tree

Let’s see how

Recall that the original expression
had two satisfying assignments

What makes a d-DNNF special?

45

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and
all disjunctions are replaced with a sum

Recall that the original expression
had two satisfying assignments

What makes a d-DNNF special?

46

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∧∧

∨

∧

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a
counting tree, where all
conjunctions are replaced
with a product and all
disjunctions are replaced
with a sum

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

What makes a d-DNNF special?

47

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

What makes a d-DNNF special?

48

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

What makes a d-DNNF special?

49

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1

What makes a d-DNNF special?

50

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1 1

What makes a d-DNNF special?

51

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1 1

2

What makes a d-DNNF special?

52

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1 1

2

2

What makes a d-DNNF special?

53

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

The value at the root is the number of satisfying
assignments of the formula!

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1 1

2

2

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

What makes a d-DNNF special?

54

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

The value at the root is the number of satisfying
assignments of the formula!

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1 1

2

2

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

There are more nuances. See the paper for details

What makes a d-DNNF special?

55

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋% ü Negation Normal Form
ü Decomposable
ü deterministic

Let us construct a counting tree, where all
conjunctions are replaced with a product and all
disjunctions are replaced with a sum

In the counting tree, assign every leaf node to take
the value one…

…and calculate the value of the root

The value at the root is the number of satisfying
assignments of the formula!

Recall that the original expression
had two satisfying assignments

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

1 1 1 1 1

1 1

2

2

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Key point: We can count the number of satisfying assignments with
what looks like a forward pass of a neural network

Efficient, if:
1. The network (i.e. the d-DNNF) can be constructed efficiently
2. The network is not too large

There are more nuances. See the paper for details

We can also perform weighted model counting

56

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

We can also perform weighted model counting

57

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Let’s look at the truth table first

𝑋! 𝑋" 𝑋% 𝛼
⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

We can also perform weighted model counting

58

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Let’s look at the truth table first

𝑋! 𝑋" 𝑋% 𝛼
⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Only these two rows matter because
they are the only assignments that
make the formula true

We can also perform weighted model counting

59

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Let’s look at the truth table first

𝑋! 𝑋" 𝑋% 𝛼 weight

⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤ 0.8	×0.3	×0.4 = 0.096

⊤ ⊥ ⊤ ⊤ 0.8	×0.7	×0.6 = 0.336

⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Only these two rows matter because
they are the only assignments that
make the formula true

We can also perform weighted model counting

60

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Let’s look at the truth table first

𝑋! 𝑋" 𝑋% 𝛼 weight

⊤ ⊤ ⊤ ⊥
⊤ ⊤ ⊥ ⊤ 0.8	×0.3	×0.4 = 0.096

⊤ ⊥ ⊤ ⊤ 0.8	×0.7	×0.6 = 0.336

⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊥

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Only these two rows matter because
they are the only assignments that
make the formula true

Total weight
= 0.096 + 0.336	
= 0.432

We can also perform weighted model counting

61

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

We can also perform weighted model counting

62

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

0.8 0.6 0.7 0.3 0.4

First, assign all the literals
their respective weights

We can also perform weighted model counting

63

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

0.8 0.6 0.7 0.3 0.4

0.12

First, assign all the literals
their respective weights

Next, propagate forward

We can also perform weighted model counting

64

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

0.8 0.6 0.7 0.3 0.4

0.42 0.12

First, assign all the literals
their respective weights

Next, propagate forward

We can also perform weighted model counting

65

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

0.8 0.6 0.7 0.3 0.4

0.42 0.12

0.54

First, assign all the literals
their respective weights

Next, propagate forward

We can also perform weighted model counting

66

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

0.8 0.6 0.7 0.3 0.4

0.42 0.12

0.54

0.432
First, assign all the literals
their respective weights

Next, propagate forward

We can also perform weighted model counting

67

𝛼 = 𝑋! ∧ ¬(𝑋" ↔ 𝑋%) is the same as 𝑋! ∧ 𝑋" ∧ ¬𝑋% ∨ ¬𝑋" ∧ 𝑋%

Darwiche, Adnan. "On the tractable counting of theory models and its application to truth maintenance and belief revision." Journal of Applied Non-
Classical Logics 11, no. 1-2 (2001): 11-34.

Suppose we have weights
for variables

𝑿 𝐰eight(𝑿) 𝐰eight(¬𝑿)

𝑋! 0.8 0.2

𝑋" 0.3 0.7

𝑋# 0.6 0.4

Total weight of
satisfying assignments
= 0.432

We can compute this weight using the counting tree

𝑋! ¬𝑋" 𝑋"𝑋% ¬𝑋%

∗∗

+

∗

0.8 0.6 0.7 0.3 0.4

0.42 0.12

0.54

0.432
First, assign all the literals
their respective weights

Next, propagate forward

The value at the root is the
total weighted model
count!

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

68

This term requires us to accumulate quantities computed for every
satisfying assignment for the formula 𝛼

Is this a problem? Have we seen this before?

Computing the semantic loss requires us to perform weighted model counting

Intractable in the worst case, but tractable subsets of logic exist

A second look at the semantic loss

𝐿 𝛼, 𝐩 ∝ − log*
!⊨#

+
$:!⊨&!

𝑝$ ⋅ +
$:!⊨¬&!

(1 − 𝑝$)	

69

This term requires us to accumulate quantities computed for every
satisfying assignment for the formula 𝛼

Is this a problem? Have we seen this before?

Computing the semantic loss requires us to perform weighted model counting

Intractable in the worst case, but tractable subsets of logic exist

𝐿 𝛼, 𝐩 ∝ − log𝑊𝑀𝐶(𝛼, 𝐩)

Knowledge compilation can help

Knowledge compilation: The process of converting a propositional knowledge
base into a form that better supports certain kinds of queries

In our case, we can compile any propositional formula into a d-DNNF, which
allows for two operations efficiently (if the resulting d-DNNF is not too large):

1. We can perform model counting and weighted model counting efficiently

2. We can take partial derivatives with respect to inputs efficiently

70

Logic as loss: Semantic loss

• Building up to semantic loss: The axioms

• Semantic loss

• Examples
– Conjunction
– Implication

• Complex constraints & Weighted Model Counting
– Knowledge Compilation
– Example: The exactly-one constraint

71

A simple semi-supervised learning example

Suppose we have:
• A small number of labeled examples for a task with 𝑘 labels
• A large collection of unlabeled examples

What information can the unlabeled examples provide to a model?
An unlabeled example must also have one and exactly one of the 𝑘 labels
Can this information help train a model?

72

A binary classification example

73
Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. "A semantic loss function for deep learning with symbolic knowledge." In ICML 2018

Decision boundaries
should be far away
from all examples.
Even unlabeled ones

The exactly-one constraint

Suppose we have three possible decisions produced by one or more neural networks: 𝑋,, 𝑋-, 𝑋.

We want to enforce the following constraints about these decisions:
– One of these three decisions must be true

𝑋, ∨ 𝑋- ∨ 𝑋.
– No two of the three decisions can simultaneously be true

¬𝑋, ∨ ¬𝑋-
¬𝑋- ∨ ¬𝑋.
¬𝑋. ∨ ¬𝑋,

Together, these constraints require that exactly one of the decisions should be true

How can we incorporate this knowledge into our loss?

74

The compiled exactly-one constraint

The original constraint
𝑋, ∨ 𝑋- ∨ 𝑋. ∧ ¬𝑋, ∨ ¬𝑋- ∧ ¬𝑋- ∨ ¬𝑋. ∧ ¬𝑋. ∨ ¬𝑋,

This is not in the deterministic decomposable negation normal form

75

The compiled exactly-one constraint

The original constraint
𝑋, ∨ 𝑋- ∨ 𝑋. ∧ ¬𝑋, ∨ ¬𝑋- ∧ ¬𝑋- ∨ ¬𝑋. ∧ ¬𝑋. ∨ ¬𝑋,

This is not in the deterministic decomposable negation normal form

But we can compile it to produce the following equivalent d-DNNF expression
𝑋, ∧ ¬𝑋- ∧ ¬𝑋. ∨ ¬𝑋, ∧ 𝑋- ∧ ¬𝑋. ∨ ¬𝑋, ∧ ¬𝑋- ∧ 𝑋.

Refer: The work by Adnan Darwiche in the 2000s that defines the normal form, analyzes complexity of querying
it, and shows how to convert arbitrary Boolean formulas to the form

76

The compiled exactly-one constraint

The original constraint
𝑋, ∨ 𝑋- ∨ 𝑋. ∧ ¬𝑋, ∨ ¬𝑋- ∧ ¬𝑋- ∨ ¬𝑋. ∧ ¬𝑋. ∨ ¬𝑋,

This is not in the deterministic decomposable negation normal form

But we can compile it to produce the following equivalent d-DNNF expression
𝑋, ∧ ¬𝑋- ∧ ¬𝑋. ∨ ¬𝑋, ∧ 𝑋- ∧ ¬𝑋. ∨ ¬𝑋, ∧ ¬𝑋- ∧ 𝑋.

Refer: The work by Adnan Darwiche in the 2000s that defines the normal form, analyzes complexity of querying
it, and shows how to convert arbitrary Boolean formulas to the form

Important: Because the semantic loss does not depend on the syntactic form that we use to
define the constraint, we are free to use the more efficient form

77

Summary: Semantic loss

An axiomatic approach for converting logic to loss functions
• Produces differentiable losses
• Equivalent to cross-entropy when we have labeled examples

Key technical component
• Sum over the probabilities of assignments that satisfy the Boolean expression
• In practice: compile to tractable representations, and if this produces a small enough expression, we can

perform forward and backward passes using standard tools
• Other approaches possible. E.g. approximation

Pros and cons
• Well defined semantics, syntactic variations don’t matter
• But, could hide a difficult computational problem in the innermost loop of gradient based optimization

78

