Inference: Integer Linear Programs

So far in the class

- Thinking about structures
 - A graph, a collection of parts that are labeled jointly, a collection of decisions
- Algorithms for learning
 - Local learning
 - Learn parameters for individual components independently
 - Learning algorithm not aware of the full structure
 - Global learning
 - Learn parameters for the full structure
 - Learning algorithm "knows" about the full structure
- This section: *Prediction*
 - Sets structured prediction apart from binary/multiclass

The big picture

- MAP Inference is combinatorial optimization
- Combinatorial optimization problems can be written as integer linear programs (ILP)
 - The conversion is not always trivial
 - Allows injection of "knowledge" into the inference in the form of constraints
- Different ways of solving ILPs
 - Commercial solvers: CPLEX, Gurobi, etc
 - Specialized solvers if you know something about your problem
 - Incremental ILP, Lagrangian relaxation, etc
 - Can approximate to linear programs and hope for the best
- Integer linear programs are NP hard in general
 - No free lunch

Today's Agenda

- Linear and integer linear programming
 - What are they?
 - The geometric perspective
- ILPs for inference
 - Simple example: Multiclass classification
 - More general structures

Detour: Linear programming

- Minimizing a linear objective function subject to a finite number of linear constraints (equality or inequality)
- Very widely applicable
 - Operations research, micro-economics, management
- Historical note/anecdote
 - Developed during world war 2 to optimize army expenditure
 - Nobel Prize in Economics 1975
 - "Programming" not the same as computer programming
 - "*Program*" referred to military schedules and programming referred to optimizing the program

A student wants to spend as little money on food while getting sufficient amount of vitamin Z and nutrient X. Her options are:

Item	Cost/100g	Vitamin Z	Nutrient X
Carrots	2	4	0.4
Sunflower seeds	6	10	4
Double cheeseburger	0.3	0.01	2

How should she spend her money to get at least 5 units of vitamin Z and 3 units of nutrient X?

A student wants to spend as little money on food while getting sufficient amount of vitamin Z and nutrient X. Her options are:

Item	Cost/100g	Vitamin Z	Nutrient X
Carrots	2	4	0.4
Sunflower seeds	6	10	4
Double cheeseburger	0.3	0.01	2

How should she spend her money to get at least 5 units of vitamin Z and 3 units of nutrient X?

Let c, s and d denote how much of each item is purchased

Minimize total cost such that At least 5 units of vitamin Z, At least 3 units of nutrient X,

The number of units purchased is not negative

A student wants to spend as little money on food while getting sufficient amount of vitamin Z and nutrient X. Her options are:

Item	Cost/100g	Vitamin Z	Nutrient X
Carrots	2	4	0.4
Sunflower seeds	6	10	4
Double cheeseburger	0.3	0.01	2

How should she spend her money to get at least 5 units of vitamin Z and 3 units of nutrient X?

Let c, s and d denote how much of each item is purchased

min2c + 6s + 0.3dMinimize total costsuch that
At least 5 units of vitamin Z,
At least 3 units of nutrient X,
The number of units purchased is not negative

A student wants to spend as little money on food while getting sufficient amount of vitamin Z and nutrient X. Her options are:

Item	Cost/100g	Vitamin Z	Nutrient X
Carrots	2	4	0.4
Sunflower seeds	6	10	4
Double cheeseburger	0.3	0.01	2

How should she spend her money to get at least 5 units of vitamin Z and 3 units of nutrient X?

Let c, s and d denote how much of each item is purchased

$\min 2c + 6s + 0.3d$	Minimize total cost
such that	
$4c + 10s + 0.01d \ge 5$	At least 5 units of vitamin Z,

At least 3 units of nutrient X,

The number of units purchased is not negative

A student wants to spend as little money on food while getting sufficient amount of vitamin Z and nutrient X. Her options are:

Item	Cost/100g	Vitamin Z	Nutrient X
Carrots	2	4	0.4
Sunflower seeds	6	10	4
Double cheeseburger	0.3	0.01	2

How should she spend her money to get at least 5 units of vitamin Z and 3 units of nutrient X?

Let c, s and d denote how much of each item is purchased

min $2c + 6s + 0.3d$	Minimize total cost
such that	
$4c + 10s + 0.01d \ge 5$	At least 5 units of vitamin Z,
$0.4c + 4s + 2d \ge 3$	At least 3 units of nutrient X,
The number of units purchase	ed is not negative

A student wants to spend as little money on food while getting sufficient amount of vitamin Z and nutrient X. Her options are:

Item	Cost/100g	Vitamin Z	Nutrient X
Carrots	2	4	0.4
Sunflower seeds	6	10	4
Double cheeseburger	0.3	0.01	2

How should she spend her money to get at least 5 units of vitamin Z and 3 units of nutrient X?

Let c, s and d denote how much of each item is purchased

min $2c + 6s + 0.3d$	Minimize total cost
such that	
$4c + 10s + 0.01d \ge 5$	At least 5 units of vitamin Z,
$0.4c + 4s + 2d \ge 3$	At least 3 units of nutrient X,
$c \ge 0, s \ge 0, d \ge 0.$	The number of units purchased is not negative

11

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- For example:

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{In general} & \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

This is a continuous optimization problem

- And yet, there are only a finite set of possible solutions
- The constraint matrix defines a convex polytope
- Only the vertices or faces of the polytope can be solutions

The constraint matrix defines a polytope that contains allowed solutions (possibly not closed)

 $\begin{array}{ll} \max \quad \mathbf{c}^T \mathbf{x} \\ \text{subject to} \quad A \mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq \mathbf{0}. \end{array}$

subject to $A\mathbf{x} \leq \mathbf{b}$

 $\mathbf{x} \geq 0.$

The constraint matrix defines a polytope that contains allowed solutions (possibly not closed)

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

Some of the constraints: $A_i^T x \le b_i$ Points in the shaded region can are not allowed by this constraint

The constraint matrix defines a polytope that contains allowed solutions (possibly not closed)

> Every constraint forbids a half-space The points that are allowed form the feasible region

- In general $\begin{aligned} \max & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{aligned}$
- This is a continuous optimization problem
 - And yet, there are only a finite set of possible solutions
 - The constraint matrix defines a *convex* polytope
 - Only the vertices or faces of the polytope can be solutions
- Linear programs can be solved in polynomial time

Integer linear programming

• In general

max	$\mathbf{c}^T \mathbf{x}$
subject to	$A\mathbf{x} \leq \mathbf{b}$
	$\mathbf{x} \ge 0$
	Each x_i is an integer.

Geometry of integer linear programming

Integer linear programming

• In general

- Solving integer linear programs in general can be NPhard!
- LP-relaxation: Drop the integer constraints and hope for the best

0-1 integer linear programming

- In general $\max c^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \{0,1\}^n$
- An instance of integer linear programs
 Still NP-hard
- Geometry: We are only considering points that are vertices of the Boolean hypercube

0-1 integer linear programming

- In general $\max c^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \{0,1\}^n$
- An instance of integer linear programs
 Still NP-hard
- Geometry: We are only considering points that are vertices of the Boolean hypercube
 - Constraints prohibit certain vertices

Eg: Only points within this region are allowed

0-1 integer linear programming

• In general

 $\begin{array}{ccc} \max & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq 0 \\ & \mathbf{x} \in \{0,1\}^n \end{array}$

Solution can be an interior point of the constraint set defined by $Ax \le b$

- An instance of integer linear programs
 Still NP-hard
- Geometry: We are only considering points that are vertices of the Boolean hypercube
 - Constraints prohibit certain vertices

Eg: Only points within this region are allowed

Questions?

Back to structured prediction

Recall that we are solving argmax score(x, y)
 y

The goal is to produce a graph

- The set of possible values that **y** can take is finite, but large
- General idea: Frame the argmax problem as a 0-1 integer linear program
 - Allows addition of arbitrary constraints

Let's start with multi-class classification $\underset{y \in \{A,B,C\}}{\operatorname{argmax}}$

Introduce decision variables for each label

- z_A = 1 if output = A, 0 otherwise
- $z_B = 1$ if output = B, 0 otherwise
- $z_c = 1$ if output = C, 0 otherwise

Let's start with multi-class classification $\underset{y \in \{A,B,C\}}{\operatorname{argmax score}(y)}$

Introduce decision variables for each label

- $z_A = 1$ if output = A, 0 otherwise
- $z_B = 1$ if output = B, 0 otherwise
- $z_c = 1$ if output = C, 0 otherwise

$$\begin{array}{ll} \max_{\mathbf{z}} & z_A \operatorname{score}(A) + z_B \operatorname{score}(B) + z_C \operatorname{score}(C) & \\ \text{Maximize the score} \\ \text{s.t.} & \\ & \\ & \\ & z_A, z_B, z_C \in \{0, 1\}. \end{array}$$

Let's start with multi-class classification $\underset{y \in \{A,B,C\}}{\operatorname{argmax}}$

Introduce decision variables for each label

- $z_A = 1$ if output = A, 0 otherwise
- $z_B = 1$ if output = B, 0 otherwise
- $z_c = 1$ if output = C, 0 otherwise

 $\begin{array}{ll} \max_{\mathbf{z}} & z_A \operatorname{score}(A) + z_B \operatorname{score}(B) + z_C \operatorname{score}(C) \\ \text{s.t.} & z_A + z_B + z_C = 1 \\ & z_A, z_B, z_C \in \{0, 1\}. \end{array}$

Maximize the score

Pick exactly one label

An assignment to the **z** vector gives us a **y**

Let's start with multi-class classification $\underset{y \in \{A,B,C\}}{\operatorname{argmax}}$

We have taken a trivial problem (finding a highest scoring element of a list) and converted it into a representation that is NP-hard in the worst case!

Lesson: Don't solve multiclass classification with an ILP solver

$$\max_{\mathbf{z}} \quad z_A \operatorname{score}(A) + z_B \operatorname{score}(B) + z_C \operatorname{score}(C)$$

s.t.
$$z_A + z_B + z_C = 1$$

$$z_A, z_B, z_C \in \{0, 1\}.$$

Maximize the score

Pick exactly one label

An assignment to the z vector gives us a y

Questions?

Suppose each y_i can be A, B or C

Introduce one decision variable for each part being assigned labels

Our goal $\max_{y_1,y_2,y_3} score(x_1, y_1) + score(y_1, y_3) + score(x_3, y_2, y_3) + score(x_1, x_2, y_2)$

Suppose each y_i can be A, B or C

Introduce one decision variable for each part being assigned labels

Our goal $\max_{y_1, y_2, y_3} score(x_1, y_1) + score(y_1, y_3) + score(x_3, y_2, y_3) + score(x_1, x_2, y_2)$

Our goal

 $\max_{y_1, y_2, y_3} score(x_1, y_1) + score(y_1, y_3) + score(x_3, y_2, y_3) + score(x_1, x_2, y_2)$ Questions?

Suppose each y_i can be A, B or C

Introduce one decision variable for each part being assigned labels

Each of these decision variables is associated with a score

 $\sum_{l} z_{1l} s_{1l} + \sum_{l} z_{2l} s_{2l} + \sum_{l,l'} z_{13ll'} s_{13ll'} + \sum_{l,l'} z_{23ll'} s_{23ll'}$

Our goal $\max_{y_1,y_2,y_3} score(x_1, y_1) + score(y_1, y_3) + score(x_3, y_2, y_3) + score(x_1, x_2, y_2)$

Suppose each y_i can be A, B or C

Introduce one decision variable for each part being assigned labels

Each of these decision variables is associated with a score

 $\begin{array}{ll} \max_{\mathbf{z}} & \sum_{l} z_{1l} s_{1l} + \sum_{l} z_{2l} s_{2l} + \sum_{l,l'} z_{13ll'} s_{13ll'} + \sum_{l,l'} z_{23ll'} s_{23ll'} \\ \text{s.t} & \text{Only valid output allowed} \end{array}$

Not all decisions can exist together. Eg: z_{13AB} implies z_{1A} and z_{3B}

Our goal

 $\max_{y_1, y_2, y_3} score(x_1, y_1) + score(y_1, y_3) + score(x_3, y_2, y_3) + score(x_1, x_2, y_2)$

Writing constraints as linear inequalities

Exactly one of z_A , z_B , z_C can be true $z_A + z_B + z_C = 1$

At least *m* of z_A , z_B , z_C should be true $z_A + z_B + z_C \ge m$

At most m of z_A , z_B , z_C should be true $z_A + z_B + z \le m$

Implication: $z_i \rightarrow z_j$

- Convert to disjunction: $\neg z_i \land z_j$

$$1 - z_i + z_j \ge 1$$

i.e.,
$$-z_i + z_j \ge 0$$

Writing constraints as linear inequalities

Exactly one of z_A , z_B , z_C can be true $z_A + z_B + z_C = 1$

At least *m* of z_A , z_B , z_C should be true $z_A + z_B + z_C \ge m$

At most m of z_A , z_B , z_C should be true $z_A + z_B + z \le m$

Implication: $z_i \rightarrow z_j$ - Convert to disjunction: $\neg z_i \wedge z_j$ $1 - z_i + z_j \ge 1$ *i.e.*, $-z_i + z_j \ge 0$

Generally: All Boolean formulas can be converted to constraints

> Exercise: Convert the toy model we saw earlier to an ILP by hand

Integer linear programming for inference

- Easy to add additional knowledge
 - Specify them as Boolean formulas
 - Examples
 - "If y_1 is an A, then y_2 or y_3 should be a B or C"
 - "No more than two A's allowed in the output"
- Many inference problems have "standard" mappings to ILPs
 - Sequences, parsing, dependency parsing
- Encoding of the problem makes a difference in solving time
 The mechanical encoding may not be efficient to solve
- Generally: more complex constraints make solving harder

Exercise: Alignment

Suppose we have two sequences

 x_{11} x_{12} x_{13} \cdots x_{1n}

 $x_{21} \quad x_{22} \quad x_{23} \quad \cdots \quad x_{2m}$

Each pair x_{1i} , x_{2j} is assigned a score s_{ij} .

Exercise: Alignment

Suppose we have two sequences

Each pair x_{1i} , x_{2j} is assigned a score s_{ij} .

The goal is to find edges between the two sequences such that the following conditions hold:

- 1. The total score of the selected edges is maximized
- 2. No more than one edge should be connected to any element of the second sequence.

Exercise: Alignment

Suppose we have two sequences

Each pair x_{1i} , x_{2j} is assigned a score s_{ij} .

The goal is to find edges between the two sequences such that the following conditions hold:

- 1. The total score of the selected edges is maximized
- 2. No more than one edge should be connected to any element of the second sequence.

How can this be written as an ILP?

ILP for inference: Remarks

- Any combinatorial optimization problem can be written as an ILP
 - Even the "easy"/polynomial ones
 - Given an ILP, checking whether it represents a polynomial problem is intractable in general
- ILPs are a general language for thinking about combinatorial optimization
 - The representation allows us to make general statements about inference
 - Important: Framing/writing down the inference problem is separate from solving it
- Off-the-shelf solvers for ILPs are quite good
 - Gurobi, CPLEX
 - Use an off the shelf solver only if you can't solve your inference problem otherwise

The big picture

- MAP Inference is combinatorial optimization
- Combinatorial optimization problems can be written as 0-1 integer linear programs
 - The conversion is not always trivial
 - Allows injection of "knowledge" into the inference in the form of constraints
- Different ways of solving ILPs
 - Commercial solvers: CPLEX, Gurobi, etc
 - Specialized solvers if you know something about your problem
 - Incremental ILP, Lagrangian relaxation, etc
 - Can relax to linear programs and hope for the best
- Integer linear programs are NP hard in general
 - No free lunch

Questions?