
Inference: Integer Linear Programs

1



So far in the class

• Thinking about structures
– A graph, a collection of parts that are labeled jointly, a collection of 

decisions 

• Algorithms for learning
– Local learning

• Learn parameters for individual components independently 
• Learning algorithm not aware of the full structure

– Global learning
• Learn parameters for the full structure 
• Learning algorithm “knows” about the full structure

• This section: Prediction
– Sets structured prediction apart from binary/multiclass
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The big picture

• MAP Inference is combinatorial optimization

• Combinatorial optimization problems can be written as integer linear 
programs (ILP)
– The conversion is not always trivial
– Allows injection of “knowledge” into the inference in the form of constraints

• Different ways of solving ILPs
– Commercial solvers: CPLEX, Gurobi, etc
– Specialized solvers if you know something about your problem

• Incremental ILP, Lagrangian relaxation, etc
– Can approximate to linear programs and hope for the best

• Integer linear programs are NP hard in general
– No free lunch
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Today’s Agenda

• Linear and integer linear programming
– What are they?
– The geometric perspective

• ILPs for inference
– Simple example: Multiclass classification
– More general structures
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Detour: Linear programming

• Minimizing a linear objective function subject to a finite 
number of linear constraints (equality or inequality)

• Very widely applicable
– Operations research, micro-economics, management

• Historical note/anecdote
– Developed during world war 2 to optimize army expenditure

• Nobel Prize in Economics 1975

– “Programming” not the same as computer programming
• “Program” referred to military schedules and programming referred to optimizing 

the program
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Example: The diet problem
A student wants to spend as little money on food while getting sufficient 
amount of vitamin Z and nutrient X. Her options are:

How should she spend her money to get at least 5 units of vitamin Z and 3 
units of nutrient X?
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Item Cost/100g Vitamin Z Nutrient X

Carrots 2 4 0.4

Sunflower seeds 6 10 4

Double cheeseburger 0.3 0.01 2
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Linear programming

In general
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Linear programming

In general

This is a continuous optimization problem
– And yet, there are only a finite set of possible solutions
– The constraint matrix defines a convex polytope
– Only the vertices or faces of the polytope can be solutions
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Geometry of linear programming
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One of the constraints: 𝐴!"𝒙 ≤ 𝑏!
The constraint matrix defines   
a polytope that contains 
allowed solutions (possibly 
not closed)



Geometry of linear programming
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One of the constraints: 𝐴!"𝒙 ≤ 𝑏!

Points in the 
shaded region can 
are not allowed by 
this constraint

The constraint matrix defines   
a polytope that contains 
allowed solutions (possibly 
not closed)



Geometry of linear programming
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The constraint matrix defines   
a polytope that contains 
allowed solutions (possibly 
not closed)

Every constraint forbids a half-space
The points that are allowed form the 
feasible region



Geometry of linear programming
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Geometry of linear programming
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Geometry of linear programming
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The constraint matrix defines 
a polytope that contains 
allowed solutions (possibly 
not closed)

The objective defines 
cost for every point in 
the space

Even though all points in 
the region are allowed, 
points on the faces 
maximize/minimize the cost



Linear programming

• In general

• This is a continuous optimization problem
– And yet, there are only a finite set of possible solutions
– The constraint matrix defines a convex polytope
– Only the vertices or faces of the polytope can be solutions

• Linear programs can be solved in polynomial time
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Integer linear programming

• In general
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Geometry of integer linear programming
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The constraint matrix defines 
polytope that contains 
allowed solutions (possibly 
not closed)

The objective defines 
cost for every point in 
the space

Only integer points 
allowed



Integer linear programming

• In general

• Solving integer linear programs in general can be NP-
hard!

• LP-relaxation: Drop the integer constraints and hope 
for the best
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0-1 integer linear programming

• In general

• An instance of integer linear programs
– Still NP-hard

• Geometry: We are only considering points that are 
vertices of the Boolean hypercube
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0-1 integer linear programming

• In general

• An instance of integer linear programs
– Still NP-hard

• Geometry: We are only considering points that are 
vertices of the Boolean hypercube
– Constraints prohibit certain vertices
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0-1 integer linear programming

• In general

• An instance of integer linear programs
– Still NP-hard

• Geometry: We are only considering points that are 
vertices of the Boolean hypercube
– Constraints prohibit certain vertices
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Eg: Only points 
within this region 
are allowed

Solution can be an 
interior point of the 
constraint set 
defined by Ax ≤ b

Questions?



Back to structured prediction

• Recall that we are solving argmax
𝐲

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦)

– The goal is to produce a graph

• The set of possible values that y can take is finite, but 
large

• General idea: Frame the argmax problem as a 0-1 
integer linear program
– Allows addition of arbitrary constraints
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Thinking in ILPs 

Let’s start with multi-class classification
argmax
!∈{$,&,'}

score(𝑦)

Introduce decision variables for each label
• zA = 1 if output = A, 0 otherwise
• zB = 1 if output = B, 0 otherwise
• zC = 1 if output = C, 0 otherwise
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Maximize the score

Pick exactly one label

We have taken a trivial problem (finding a highest scoring element 
of a list) and converted it into a representation that is NP-hard in 

the worst case!

Lesson: Don’t solve multiclass classification with an ILP solver

An assignment to the z vector gives us a y

Questions?



ILP for a general conditional models
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Suppose each yi can be A, B or C

Introduce one decision variable 
for each part being assigned 
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ILP for a general conditional models
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ILP for a general conditional models
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Suppose each yi can be A, B or C

Introduce one decision variable 
for each part being assigned 
labels

Each of these decision variables 
is associated with a score

Not all decisions can exist 
together.
Eg: z13AB implies z1A and z3B
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Writing constraints as linear inequalities

Exactly one of zA, zB, zC can be true
𝑧𝐴	 + 	𝑧𝐵	 + 	𝑧𝐶	 = 	1	

At least 𝑚 of zA, zB, zC should be true
𝑧𝐴	 + 	𝑧𝐵	 + 	𝑧𝐶	 ≥ 𝑚	

At most 𝑚 of zA, zB, zC should be true
𝑧𝐴	 + 	𝑧𝐵	 + 	𝑧 ≤ 𝑚	

Implication: 𝑧! → 𝑧"
– Convert to disjunction:  ¬𝑧! ∧ 𝑧"

	 1 − 𝑧!+𝑧" ≥ 1	
𝑖. 𝑒., −𝑧! + 𝑧" ≥ 0
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Generally: All Boolean 
formulas can be converted to 
constraints

Exercise: Convert the toy 
model we saw earlier to an 
ILP by hand



Integer linear programming for inference

• Easy to add additional knowledge
– Specify them as Boolean formulas
– Examples

• “If y1 is an A, then y2 or y3 should be a B or C”
• “No more than two A’s allowed in the output”

• Many inference problems have “standard” mappings to ILPs
– Sequences, parsing, dependency parsing

• Encoding of the problem makes a difference in solving time 
– The mechanical encoding may not be efficient to solve

• Generally: more complex constraints make solving harder

49



Exercise: Alignment

Suppose we have two sequences 
𝑥##	 𝑥#$	 𝑥#% 	 ⋯	 𝑥#&

𝑥$#	 𝑥$$	 𝑥$% 	 ⋯	 𝑥$'

Each pair 𝑥#! , 𝑥$" is assigned a score 𝑠!". 

The goal is to find edges between the two sequences such that the 
following conditions hold:
1. The total score of the selected edges is maximized
2. No more than one edge should be connected to any element of 

the second sequence.
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How can this be written as an ILP?



ILP for inference: Remarks

• Any combinatorial optimization problem can be written as an 
ILP
– Even the “easy”/polynomial ones
– Given an ILP, checking whether it represents a polynomial problem is 

intractable in general

• ILPs are a general language for thinking about combinatorial 
optimization
– The representation allows us to make general statements about inference
– Important: Framing/writing down the inference problem is separate from 

solving it

• Off-the-shelf solvers for ILPs are quite good
– Gurobi, CPLEX
– Use an off the shelf solver only if you can’t solve your inference problem 

otherwise
53



The big picture

• MAP Inference is combinatorial optimization

• Combinatorial optimization problems can be written as 0-1 integer linear 
programs
– The conversion is not always trivial
– Allows injection of “knowledge” into the inference in the form of constraints

• Different ways of solving ILPs
– Commercial solvers: CPLEX, Gurobi, etc
– Specialized solvers if you know something about your problem

• Incremental ILP, Lagrangian relaxation, etc
– Can relax to linear programs and hope for the best

• Integer linear programs are NP hard in general
– No free lunch
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