
Graph search for inference

Neuro-symbolic modeling
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The problem

Suppose we have a problem of assigning labels to 𝑛 
different variables

– Each label assignment has a score
– Dependencies between the label choices 

• could be hard constraints 
 e.g. if label1=A then label2=B
• could be soft preferences 
 e.g. score(label1=A, label2=B) = -40

How do we make a joint assignment to these 
variables that maximizes the total score?
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Label1=A

Label1=B

Label1=C

We will assume that there are three possible labels: A, B, C
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One solution: Traverse a search tree/graph
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Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

And so on



An example: Decoding with a language model

Given some method to create a probability distribution 𝑃(token ∣ 𝑤!𝑤"𝑤#⋯)
how should we predict the “best” sequence?

What does best mean? Ideas?
Some notions of best when it comes to generating text

– Most probable
– Fast
– Does not repeat
– Diverse outputs
– ….
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A toy example
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Suppose our language model can pick from one of the 
following words at any step: 

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words 
seen so far

Every token in the vocabulary is assigned a probability



A toy example

23

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the 
following words at any step: 

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words 
seen so far

Every token in the vocabulary is assigned a probability



A toy example

24

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the 
following words at any step: 

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

Suppose our decoder decides to pick the word “she”

This produces a new distribution over the next token
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next token distribution would be different.
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Graph algorithms for inference

• Many graph algorithms you have seen are applicable for inference

• Some examples
– “Best” path. Eg: Viterbi, parsing
– Min-cut/max-flow. Eg: Image segmentation
– Maximum spanning tree. Eg: Dependency parsing
– Bipartite matching. Eg: Aligning sequences
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Best path for inference

• Broad description of approach:
– Construct a graph/hypergraph from the input and output

– Decompose the total score along edge/hyperedges

– Inference is finding the shortest/longest path in this weighted graph

Example: The Viterbi algorithm finds a shortest path in a specific graph
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Viterbi algorithm as best path
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Viterbi algorithm as best path
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Viterbi algorithm as best path
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Each edge has a weight associated with it
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Viterbi algorithm as best path
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Goal: To find the highest scoring path in this trellisThis edge is chosen even 
though it is locally 
suboptimal because its 
subsequent prospects 
are better
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Viterbi algorithm as best path
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Goal: To find the highest scoring path in this trellis

No cycles
Nodes and edges have a specific meaning
Ordering helps



Best path algorithms

• Dijkstra’s algorithm
– Cost functions should be non-negative

• Bellman-ford algorithm
– Slower than Dijkstra’s algorithm but works with negative weights

• A* search 
– If you have a heuristic that gives the future path cost from a state but does not 

over-estimate it
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Dynamic programming

• General solution strategy for inference

• Examples
– Viterbi, CKY algorithm, Dijkstra’s algorithm, and many more

• Key ideas:
– Memoization: Don’t re-compute something you already have
– Requires an ordering of the variables

• Remember:
– The hypergraph may not allow for the best ordering of the variables
– Existence of a dynamic programming algorithm does not mean polynomial time/space. 

• State space may be too big. Use heuristics such as beam search
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Inference as search: Setting

• Predicting a graph as a sequence of decisions

• Data structures:
– State: Encodes partial assignment to the variables
– Transitions: Move from one partial assignment to another
– Start state
– End state: We have a full assignment

• There may be more than one end state

• Each transition is scored with the learned model

• Goal: Find an end state that has the highest total score
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Example
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Suppose each y can be one 
of A, B or C

Start state: No assignments
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x1 x2 x3

y3
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Suppose each y can be one 
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned  

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)
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(A,A,A) (C,C,C)

…..

Note: Here we have assumed an 
ordering (y1, y2, y3)
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x1 x2 x3

y3
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y1

Suppose each y can be one 
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned  

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

The goal of inference: To traverse 
this graph from the start state and 
reach the end state that has the 
best (highest/lowest) score



Graph search algorithms

• Standard graph search algorithms can be used for inference

• Breadth/depth first search
– Keep a stack/queue/priority queue of “open” states

• That is, states that are to be explored

– The good: Guaranteed to be correct
• Explores every option

– The bad?
• Explores every option: Memory is an issue
• Could be slow for any non-trivial graph
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Different decoding strategies exist

Search based decoding

Deterministic approaches that involves 
searching the space of sequences to select 
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve 
sampling from the token conditional 
probability distribution 

• Random sampling
• Top-K sampling
• Nucleus sampling
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Greedy search

• At each state, choose the highest scoring next transition
– Keep only one state in memory: The current state

• What is the problem?
– Local decisions may override global optimum
– Does not explore full search space

• Greedy algorithms can give the true optimum for special classes of 
problems 
– Eg: Maximum-spanning tree algorithms are greedy

63Questions?



What would greedy search do on this graph?
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Beam search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

65

What we might really want to do is to explore the full search space.

We cannot. Beam search is a compromise



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)
At the beginning, the beam has 
only one element, the start state



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam(A, −, −)

(B, −, −)

(C, −, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(𝐴, −, −)

(𝐵, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

Now we are ready for the next step



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

0.1
-3
10
20
-1
4.1



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

0.1
-3
10
20
-1
4.1

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

77

Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(A, A, B)
(B, C, C)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(𝐴, 𝐴, 𝐵)
(B, C, C)

Final answer: Top of the beam at the end of search



Beam Search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

79

Pros
• Explores more than greedy search. Greedy 

search is beam search with beam size 1
• In general, easy to implement, very popular
• We get a set of sequences that we can then 

re-order or use in other ways



Beam Search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

80

Pros
• Explores more than greedy search. Greedy 

search is beam search with beam size 1
• In general, easy to implement, very popular
• We get a set of sequences that we can then 

re-order or use in other ways

Cons
• A good state might fall out of the beam
• Can be still repetitive. Possible solution: add an n-gram 

penalty to penalize n-grams that get repeated
• Generated text may be boring for a reader

Do we always choose the most probable next words? What 
makes a sequences of words interesting?



Sampling based approaches

Rather than picking the most probable next token, randomly pick one using 
the next token distribution

𝑤-~𝑃 𝑣 𝑤.𝑤/⋯𝑤 -0/

81



Random sampling in our toy setting
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Random sampling in our toy setting
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Random sampling in our toy setting
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Random sampling in our toy setting
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Random sampling in our toy setting
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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𝑃 𝑡𝑜𝑘𝑒𝑛! 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) =
exp 𝑠!

𝑇
∑" exp

𝑠"
𝑇

When T is lower than 1, probabilities get more sharp 
and lower probabilities get diminished

When T = 0, all the probability is placed on the token 
with the highest 𝑠! → Greedy decoding



Summary: Inference as graph search

• Inference with discrete random variables involves finding a score maximizing 
assignment to variables

• We can incrementally construct such an assignment using graph algorithms
– Many inference algorithms are efficient dynamic programming formulations
– General graph search is also helpful

• Popular heuristics in this family of methods:
– Greedy search
– Beam search
– Random sampling and its variants
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