Graph search for inference

Neuro-symbolic modeling

Suppose we have a problem of assigning labels to *n* different variables

Suppose we have a problem of assigning labels to n different variables

- Each label assignment has a score

Suppose we have a problem of assigning labels to n different variables

- Each label assignment has a score

Suppose we have a problem of assigning labels to n different variables

- Each label assignment has a score
- Dependencies between the label choices
 - could be hard constraints

e.g.if label1=A then label2=B

Suppose we have a problem of assigning labels to n different variables

- Each label assignment has a score
- Dependencies between the label choices
 - could be hard constraints
 - e.g.if label1=A then label2=B
 - could be soft preferences

e.g. score(label1=A, label2=B) = -40

Suppose we have a problem of assigning labels to n different variables

- Each label assignment has a score
- Dependencies between the label choices
 - could be hard constraints
 - e.g.if label1=A then label2=B
 - could be soft preferences

e.g. score(label1=A, label2=B) = -40

Suppose we have a problem of assigning labels to \boldsymbol{n} different variables

- Each label assignment has a score
- Dependencies between the label choices
 - could be hard constraints
 - e.g.if label1=A then label2=B
 - could be soft preferences

e.g. score(label1=A, label2=B) = -40

Suppose we have a problem of assigning labels to \boldsymbol{n} different variables

- Each label assignment has a score
- Dependencies between the label choices
 - could be hard constraints
 - e.g.if label1=A then label2=B
 - could be soft preferences

e.g. score(label1=A, label2=B) = -40

Suppose we have a problem of assigning labels to n different variables

- Each label assignment has a score
- Dependencies between the label choices
 - could be hard constraints
 - e.g.if label1=A then label2=B
 - could be soft preferences
 - e.g. score(label1=A, label2=B) = -40

How do we make a joint assignment to these variables that maximizes the total score?

Suppose we have a "natural" ordering of the variables

Given label1=A, we can compute the scores for label2 being A, B, C

Suppose we have a "natural" ordering of the variables

And so on

An example: Decoding with a language model

Given some method to create a probability distribution $P(\text{token} \mid w_0 w_1 w_2 \cdots)$ how should we predict the "best" sequence?

Decoding: The algorithmic question

Given some method to create a probability distribution $P(\text{token} \mid w_0 w_1 w_2 \cdots)$ how should we predict the "best" sequence? The answer to this question does not depend on what kind of model we have underneath the probabilities

Decoding: The algorithmic question

Given some method to create a probability distribution $P(\text{token} \mid w_0 w_1 w_2 \cdots)$ how should we predict the "best" sequence?

What does *best* mean? Ideas?

The answer to this question does not depend on what kind of model we have underneath the probabilities

Decoding: The algorithmic question

Given some method to create a probability distribution $P(\text{token} \mid w_0 w_1 w_2 \cdots)$ how should we predict the "best" sequence? The answer to this question does not depend on what kind of model we have underneath the probabilities

What does *best* mean? Ideas?

Some notions of best when it comes to generating text

- Most probable
- Fast
- Does not repeat
- Diverse outputs

—

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words seen so far

Every token in the vocabulary is assigned a probability

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words seen so far

Every token in the vocabulary is assigned a probability

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

Suppose our decoder decides to pick the word "she"

This produces a new distribution over the next token

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

If it picked a different token, say "a", then the next token distribution would be different.

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

And so on...

Graph algorithms for inference

- Many graph algorithms you have seen are applicable for inference
- Some examples
 - "Best" path. Eg: Viterbi, parsing
 - Min-cut/max-flow. Eg: Image segmentation
 - Maximum spanning tree. Eg: Dependency parsing
 - Bipartite matching. Eg: Aligning sequences

Best path for inference

- Broad description of approach:
 - Construct a graph/hypergraph from the input and output
 - Decompose the total score along edge/hyperedges
 - Inference is finding the shortest/longest path in this weighted graph

Example: The Viterbi algorithm finds a shortest path in a specific graph

Viterbi algorithm as best path

Viterbi algorithm as best path

Each edge has a weight associated with it Α Α Α Α В В В S В t С C С С

Best path algorithms

- Dijkstra's algorithm
 - Cost functions should be non-negative
- Bellman-ford algorithm
 - Slower than Dijkstra's algorithm but works with negative weights
- A* search
 - If you have a heuristic that gives the future path cost from a state but does not over-estimate it

Dynamic programming

- General solution strategy for inference
- Examples
 - Viterbi, CKY algorithm, Dijkstra's algorithm, and many more
- Key ideas:
 - Memoization: Don't re-compute something you already have
 - Requires an ordering of the variables
- Remember:
 - The hypergraph may not allow for the best ordering of the variables
 - Existence of a dynamic programming algorithm does not mean polynomial time/space.
 - State space may be too big. Use heuristics such as beam search

Inference as search: Setting

- Predicting a graph as a sequence of decisions
- Data structures:
 - State: Encodes partial assignment to the variables
 - Transitions: Move from one partial assignment to another
 - Start state
 - End state: We have a full assignment
 - There may be more than one end state
- Each transition is scored with the learned model
- Goal: Find an end state that has the highest total score

Suppose each y can be one of A, B or C

- State: Triples (y_1, y_2, y_3) all possibly unknown
 - (A, -, -), (-, A, A), (-, -, -),...
- Transition: Fill in one of the unknowns
- Start state: (-,-,-)
- End state: All three y's are assigned

- State: Triples (y₁, y₂, y₃) all possibly unknown
 - (A, -, -), (-, A, A), (-, -, -),...
- Transition: Fill in one of the unknowns
- Start state: (-,-,-)
- End state: All three y's are assigned

- Transition: Fill in one of the unknowns
- Start state: (-,-,-)

٠

• End state: All three y's are assigned

Fill in a label in a slot. The edge is scored by the factors that can be computed so far

- Start state: (-,-,-)
- End state: All three y's are assigned

Fill in a label in a slot. The edge is scored by the factors that can be computed so far

Keep assigning values to slots

• End state: All three y's are assigned

Keep assigning values to slots

٠

٠

Till we reach a goal state

Graph search algorithms

- Standard graph search algorithms can be used for inference
- Breadth/depth first search
 - Keep a stack/queue/priority queue of "open" states
 - That is, states that are to be explored
 - The good: Guaranteed to be correct
 - Explores every option
 - The bad?
 - Explores every option: Memory is an issue
 - Could be slow for any non-trivial graph

Search based decoding

Sampling based decoding

Search based decoding

Sampling based decoding

Deterministic approaches that involves searching the space of sequences to select one

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

Sampling based decoding

Randomized approaches that involve sampling from the token conditional probability distribution

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

- Greedy decoding
- Beam search

Sampling based decoding

Randomized approaches that involve sampling from the token conditional probability distribution

- Random sampling
- Top-K sampling
- Nucleus sampling

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

- Greedy decoding
- Beam search

Sampling based decoding

Randomized approaches that involve sampling from the token conditional probability distribution

- Random sampling
- Top-K sampling
- Nucleus sampling

Greedy search

- At each state, choose the highest scoring next transition
 - Keep only one state in memory: The current state
- What is the problem?
 - Local decisions may override global optimum
 - Does not explore full search space
- Greedy algorithms can give the true optimum for special classes of problems
 - Eg: Maximum-spanning tree algorithms are greedy

What would greedy search do on this graph?

Beam search

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

What we might really want to do is to explore the full search space.

We cannot. Beam search is a compromise

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

At the beginning, the beam has only one element, the start state

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)
- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

Now we are ready for the next step

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

$$(-, -, -) (B, -, -) (B, -, -) (B, A, -) (B, A, -) (B, B, -) (B, B, -) (B, C, -) (B, C, -) (B, C, -) (B, C, -) (A, A, -) (B, C, -) (A, B, -) (A, B, -) (A, B, -) (A, C, -) (A, B, -) (A, C, -) (A,$$

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states •
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

$$(-, -, -)$$

$$(B, -, -)$$

$$(B,$$

in the beam

form the

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Final answer: Top of the beam at the end of search

Beam Search

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Pros

- Explores more than greedy search. Greedy search is beam search with beam size 1
- In general, easy to implement, very popular
- We get a set of sequences that we can then re-order or use in other ways

Beam Search

- Keep size-limited priority queue of states
 - Called the beam, sorted by probability for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Pros

- Explores more than greedy search. Greedy search is beam search with beam size 1
- In general, easy to implement, very popular
- We get a set of sequences that we can then re-order or use in other ways

Cons

- A good state might fall out of the beam
- Can be still repetitive. Possible solution: add an n-gram penalty to penalize n-grams that get repeated
- Generated text may be boring for a reader Do we always choose the most probable next words? What makes a sequences of words interesting?

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$w_n \sim P(v \mid w_0 w_1 \cdots w_{\{n-1\}})$$

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$w_n \sim P(v \mid w_0 w_1 \cdots w_{\{n-1\}})$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

– Does not produce coherent outputs. Why?

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$w_n \sim P(v \mid w_0 w_1 \cdots w_{\{n-1\}})$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

Does not produce coherent outputs. Why?
 A solution: Use a temperature term in the softmax to make the probabilities "peaky"

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$w_n \sim P(v \mid w_0 w_1 \cdots w_{\{n-1\}})$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

Does not produce coherent outputs. Why?
 A solution: Use a temperature term in the softmax to make the probabilities "peaky"

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$w_n \sim P(v \mid w_0 w_1 \cdots w_{\{n-1\}})$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

Does not produce coherent outputs. Why?
 A solution: Use a *temperature* term in the softmax to make the probabilities "peaky"

$$P(token_i | context) = \frac{\exp\left(\frac{1}{\sum_{j} \exp\left(\frac{1}{\sum_{j} \exp\left($$

When T is lower than 1, probabilities get more sharp and lower probabilities get diminished

When T = 0, all the probability is placed on the token with the highest $s_i \rightarrow$ Greedy decoding

Summary: Inference as graph search

- Inference with discrete random variables involves finding a score maximizing assignment to variables
- We can incrementally construct such an assignment using graph algorithms
 - Many inference algorithms are efficient dynamic programming formulations
 - General graph search is also helpful
- Popular heuristics in this family of methods:
 - Greedy search
 - Beam search
 - Random sampling and its variants