
Graph search for inference

Neuro-symbolic modeling

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

1

1 2 3 4 5 6

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score

2

1 2 3 4 5 6

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score

3

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of label
assignments of
variable 5

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score
– Dependencies between the label choices

• could be hard constraints
 e.g. if label1=A then label2=B

4

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of label
assignments of
variable 5

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score
– Dependencies between the label choices

• could be hard constraints
 e.g. if label1=A then label2=B
• could be soft preferences
 e.g. score(label1=A, label2=B) = -40

5

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of label
assignments of
variable 5

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score
– Dependencies between the label choices

• could be hard constraints
 e.g. if label1=A then label2=B
• could be soft preferences
 e.g. score(label1=A, label2=B) = -40

6

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of label
assignments of
variable 5

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score
– Dependencies between the label choices

• could be hard constraints
 e.g. if label1=A then label2=B
• could be soft preferences
 e.g. score(label1=A, label2=B) = -40

7

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of joint label
assignments of
variables 1 & 2

Scores of label
assignments of
variable 5

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score
– Dependencies between the label choices

• could be hard constraints
 e.g. if label1=A then label2=B
• could be soft preferences
 e.g. score(label1=A, label2=B) = -40

8

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of joint label
assignments of
variables 1 & 2

Scores of label
assignments of
variable 5

Scores of joint label
assignments of
variables 3, 4 & 5

The problem

Suppose we have a problem of assigning labels to 𝑛
different variables

– Each label assignment has a score
– Dependencies between the label choices

• could be hard constraints
 e.g. if label1=A then label2=B
• could be soft preferences
 e.g. score(label1=A, label2=B) = -40

How do we make a joint assignment to these
variables that maximizes the total score?

9

1 2 3 4 5 6

Each of these scores could be
generated by a neural network

Scores of label
assignments of
variable 1

Scores of joint label
assignments of
variables 1 & 2

Scores of label
assignments of
variable 5

Scores of joint label
assignments of
variables 3, 4 & 5

One solution: Traverse a search tree/graph

10

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

One solution: Traverse a search tree/graph

11

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

One solution: Traverse a search tree/graph

12

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

We will assume that there are three possible labels: A, B, C

One solution: Traverse a search tree/graph

13

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

Label2=A

Label2=B

Label2=C

Given label1=A, we can compute the scores for label2 being A, B, C

One solution: Traverse a search tree/graph

14

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

Label2=C

One solution: Traverse a search tree/graph

15

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

One solution: Traverse a search tree/graph

16

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

One solution: Traverse a search tree/graph

17

1 2 3 4 5 6

Suppose we have a “natural” ordering of the variables

∅

Label1=A

Label1=B

Label1=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

Label2=C

Label2=A

Label2=B

And so on

An example: Decoding with a language model

Given some method to create a probability distribution 𝑃(token ∣ 𝑤!𝑤"𝑤#⋯)
how should we predict the “best” sequence?

What does best mean? Ideas?
Some notions of best when it comes to generating text

– Most probable
– Fast
– Does not repeat
– Diverse outputs
– ….

18

Decoding: The algorithmic question

Given some method to create a probability distribution 𝑃(token ∣ 𝑤!𝑤"𝑤#⋯)
how should we predict the “best” sequence?

What does best mean? Ideas?
Some notions of best when it comes to generating text

– Most probable
– Fast
– Does not repeat
– Diverse outputs
– ….

19

The answer to this question
does not depend on what
kind of model we have
underneath the probabilities

Decoding: The algorithmic question

Given some method to create a probability distribution 𝑃(token ∣ 𝑤!𝑤"𝑤#⋯)
how should we predict the “best” sequence?

What does best mean? Ideas?
Some notions of best when it comes to generating text

– Most probable
– Fast
– Does not repeat
– Diverse outputs
– ….

20

The answer to this question
does not depend on what
kind of model we have
underneath the probabilities

Decoding: The algorithmic question

Given some method to create a probability distribution 𝑃(token ∣ 𝑤!𝑤"𝑤#⋯)
how should we predict the “best” sequence?

What does best mean? Ideas?
Some notions of best when it comes to generating text

– Most probable
– Fast
– Does not repeat
– Diverse outputs
– ….

21

The answer to this question
does not depend on what
kind of model we have
underneath the probabilities

A toy example

22

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words
seen so far

Every token in the vocabulary is assigned a probability

A toy example

23

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words
seen so far

Every token in the vocabulary is assigned a probability

A toy example

24

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

Suppose our decoder decides to pick the word “she”

This produces a new distribution over the next token

A toy example

25

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

If it picked a different token, say “a”, then the
next token distribution would be different.

A toy example

26

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

A toy example

27

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

A toy example

28

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

A toy example

29

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

A toy example

30

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

A toy example

31

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

Suppose our language model can pick from one of the
following words at any step:

a, the, he, she, saw, him, her, apple

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

And so on…

Graph algorithms for inference

• Many graph algorithms you have seen are applicable for inference

• Some examples
– “Best” path. Eg: Viterbi, parsing
– Min-cut/max-flow. Eg: Image segmentation
– Maximum spanning tree. Eg: Dependency parsing
– Bipartite matching. Eg: Aligning sequences

32

Best path for inference

• Broad description of approach:
– Construct a graph/hypergraph from the input and output

– Decompose the total score along edge/hyperedges

– Inference is finding the shortest/longest path in this weighted graph

Example: The Viterbi algorithm finds a shortest path in a specific graph

33

Viterbi algorithm as best path

34

Viterbi algorithm as best path

35

Different
labels for
each step

Viterbi algorithm as best path

36

Each edge has a weight associated with it

Viterbi algorithm as best path

37

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

38

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

39

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

40

Goal: To find the highest scoring path in this trellisThis edge is chosen even
though it is locally
suboptimal because its
subsequent prospects
are better

Viterbi algorithm as best path

41

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

42

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

43

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

44

Goal: To find the highest scoring path in this trellis

No cycles
Nodes and edges have a specific meaning
Ordering helps

Best path algorithms

• Dijkstra’s algorithm
– Cost functions should be non-negative

• Bellman-ford algorithm
– Slower than Dijkstra’s algorithm but works with negative weights

• A* search
– If you have a heuristic that gives the future path cost from a state but does not

over-estimate it

45

Dynamic programming

• General solution strategy for inference

• Examples
– Viterbi, CKY algorithm, Dijkstra’s algorithm, and many more

• Key ideas:
– Memoization: Don’t re-compute something you already have
– Requires an ordering of the variables

• Remember:
– The hypergraph may not allow for the best ordering of the variables
– Existence of a dynamic programming algorithm does not mean polynomial time/space.

• State space may be too big. Use heuristics such as beam search

46

Inference as search: Setting

• Predicting a graph as a sequence of decisions

• Data structures:
– State: Encodes partial assignment to the variables
– Transitions: Move from one partial assignment to another
– Start state
– End state: We have a full assignment

• There may be more than one end state

• Each transition is scored with the learned model

• Goal: Find an end state that has the highest total score

47

Example

48

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

Suppose each y can be one
of A, B or C

Example

49

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

Suppose each y can be one
of A, B or C

Start state: No assignments

Example

50

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

Suppose each y can be one
of A, B or C

Fill in a label in a slot. The
edge is scored by the factors
that can be computed so far

Example

51

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

Suppose each y can be one
of A, B or C

Fill in a label in a slot. The
edge is scored by the factors
that can be computed so far

The only score that
can be computed if
we only know the
value of y1

Example

52

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)…..

Suppose each y can be one
of A, B or C

Keep assigning values to slots

Example

53

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)…..

Suppose each y can be one
of A, B or C

Keep assigning values to slots

The scores that
can be computed
if we only know
the values of y1
and y2

Example

54

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Suppose each y can be one
of A, B or C

Till we reach a goal state

Example

55

x1 x2 x3

y3

y2

y1

Suppose each y can be one
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Note: Here we have assumed an
ordering (y1, y2, y3)

Example

56

x1 x2 x3

y3

y2

y1

Suppose each y can be one
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

The goal of inference: To traverse
this graph from the start state and
reach the end state that has the
best (highest/lowest) score

Graph search algorithms

• Standard graph search algorithms can be used for inference

• Breadth/depth first search
– Keep a stack/queue/priority queue of “open” states

• That is, states that are to be explored

– The good: Guaranteed to be correct
• Explores every option

– The bad?
• Explores every option: Memory is an issue
• Could be slow for any non-trivial graph

57

Different decoding strategies exist

Search based decoding

Deterministic approaches that involves
searching the space of sequences to select
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve
sampling from the token conditional
probability distribution

• Random sampling
• Top-K sampling
• Nucleus sampling

58

Different decoding strategies exist

Search based decoding

Deterministic approaches that involves
searching the space of sequences to select
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve
sampling from the token conditional
probability distribution

• Random sampling
• Top-K sampling
• Nucleus sampling

59

Different decoding strategies exist

Search based decoding

Deterministic approaches that involves
searching the space of sequences to select
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve
sampling from the token conditional
probability distribution

• Random sampling
• Top-K sampling
• Nucleus sampling

60

Different decoding strategies exist

Search based decoding

Deterministic approaches that involves
searching the space of sequences to select
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve
sampling from the token conditional
probability distribution

• Random sampling
• Top-K sampling
• Nucleus sampling

61

Different decoding strategies exist

Search based decoding

Deterministic approaches that involves
searching the space of sequences to select
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve
sampling from the token conditional
probability distribution

• Random sampling
• Top-K sampling
• Nucleus sampling

62

Greedy search

• At each state, choose the highest scoring next transition
– Keep only one state in memory: The current state

• What is the problem?
– Local decisions may override global optimum
– Does not explore full search space

• Greedy algorithms can give the true optimum for special classes of
problems
– Eg: Maximum-spanning tree algorithms are greedy

63Questions?

What would greedy search do on this graph?

64

Beam search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

65

What we might really want to do is to explore the full search space.

We cannot. Beam search is a compromise

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

66

Example: Suppose we have a beam of size k = 2

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

67

Example: Suppose we have a beam of size k = 2

(−,−,−)
At the beginning, the beam has
only one element, the start state

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

68

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam(A, −, −)

(B, −, −)

(C, −, −)

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

69

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

70

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(𝐴, −, −)

(𝐵, −, −)

(C, −, −)

0.9

10

-3

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

71

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

72

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

Now we are ready for the next step

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

73

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

74

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

0.1
-3
10
20
-1
4.1

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

75

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

0.1
-3
10
20
-1
4.1

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

76

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

77

Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(A, A, B)
(B, C, C)

Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

78

Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(𝐴, 𝐴, 𝐵)
(B, C, C)

Final answer: Top of the beam at the end of search

Beam Search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

79

Pros
• Explores more than greedy search. Greedy

search is beam search with beam size 1
• In general, easy to implement, very popular
• We get a set of sequences that we can then

re-order or use in other ways

Beam Search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

80

Pros
• Explores more than greedy search. Greedy

search is beam search with beam size 1
• In general, easy to implement, very popular
• We get a set of sequences that we can then

re-order or use in other ways

Cons
• A good state might fall out of the beam
• Can be still repetitive. Possible solution: add an n-gram

penalty to penalize n-grams that get repeated
• Generated text may be boring for a reader

Do we always choose the most probable next words? What
makes a sequences of words interesting?

Sampling based approaches

Rather than picking the most probable next token, randomly pick one using
the next token distribution

𝑤-~𝑃 𝑣 𝑤.𝑤/⋯𝑤 -0/

81

Random sampling in our toy setting

82

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

And so on…

Random sampling in our toy setting

83

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

And so on…

Random sampling in our toy setting

84

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

And so on…

Random sampling in our toy setting

85

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

And so on…

Random sampling in our toy setting

86

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0
0.2
0.4
0.6
0.8
1

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

0

0.2

0.4

0.6

0.8

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

she

a

the

other
choices

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

apple

0

0.1

0.2

0.3

a
th
e he sh
e

sa
w

hi
m he
r

ap
pl
e

saw

And so on…

Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”

87

Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”

88

Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”

89

Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”

90

𝑃 𝑡𝑜𝑘𝑒𝑛! 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) =
exp 𝑠!

𝑇
∑" exp

𝑠"
𝑇

When T is lower than 1, probabilities get more sharp
and lower probabilities get diminished

When T = 0, all the probability is placed on the token
with the highest 𝑠! → Greedy decoding

Summary: Inference as graph search

• Inference with discrete random variables involves finding a score maximizing
assignment to variables

• We can incrementally construct such an assignment using graph algorithms
– Many inference algorithms are efficient dynamic programming formulations
– General graph search is also helpful

• Popular heuristics in this family of methods:
– Greedy search
– Beam search
– Random sampling and its variants

91

