Symbolic Logic: An Introduction

Inference & Inference rules

Recall: A formula *F* logically entails a formula α if there is no interpretation where *F* is **true** and α is **false**

Recall: A formula *F* logically entails a formula α if there is no interpretation where *F* is **true** and α is **false**

Logical inference or deduction

- A mechanical process for deriving valid conclusions from premises
- Logical inference is sound: it only derives logically entailed conclusions

Recall: A formula *F* logically entails a formula α if there is no interpretation where *F* is true and α is **false**

Logical inference or deduction

- A mechanical process for deriving valid conclusions from premises
- Logical inference is sound: it only derives logically entailed conclusions

Inference rule: A well defined pattern of inference whose soundness can be proven

- Inference rules allow us to make inferences from premises without having to construct truth tables
- There are several inference rules, we will see some next

Recall: A formula *F* logically entails a formula α if there is no interpretation where *F* is **true** and α is **false**

Logical inference or deduction

- A mechanical process for deriving valid conclusions from premises
- Logical inference is sound: it only derives logically entailed conclusions

Inference rule: A well defined pattern of inference whose soundness can be proven

- Inference rules allow us to make inferences from premises without having to construct truth tables
- There are several inference rules, we will see some next

Recall: A formula *F* logically entails a formula α if there is no interpretation where *F* is **true** and α is **false**

Logical inference or deduction

- A mechanical process for deriving valid conclusions from premises
- Logical inference is sound: it only derives logically entailed conclusions

Inference rule: A well defined pattern of inference whose soundness can be proven

- Inference rules allow us to make inferences from premises without having to construct truth tables
- There are several inference rules, we will see some next

Recall: A formula *F* logically entails a formula α if there is no interpretation where *F* is true and α is **false**

Logical inference or deduction

- A mechanical process for deriving valid conclusions from premises
- Logical inference is sound: it only derives logically entailed conclusions

Inference rule: A well defined pattern of inference whose soundness can be proven

- Inference rules allow us to make inferences from premises without having to construct truth tables
- There are several inference rules, we will see some next

Notation for an inference rule

If the knowledge base contains

- α something that matches α ,
- β

then the sentence eta is logically entailed

Inference rule: Modus Ponens

$$\frac{\alpha \to \beta, \qquad \alpha}{\beta}$$

From an implication, and the premise of the implication, we can infer the conclusion

Inference rule: Modus Ponens

$$\frac{\alpha \to \beta, \qquad \alpha}{\beta}$$

From an implication, and the premise of the implication, we can infer the conclusion

Is Raining \rightarrow Ground Is Wet, Is Raining

Suppose our knowledge base contains two formulas:

- 1. If it is raining, the ground is wet
- 2. It is raining

Inference rule: Modus Ponens

$$\frac{\alpha \to \beta, \qquad \alpha}{\beta}$$

From an implication, and the premise of the implication, we can infer the conclusion

IsRaining → GroundIsWet, IsRaining GroundIsWet Suppose our knowledge base contains two formulas:

- 1. If it is raining, the ground is wet
- 2. It is raining

Modus Ponens allows us to conclude that the ground is wet

 $\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$

And Elimination: From a conjunction, you can infer any of the conjuncts

 $\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$

And Elimination: From a conjunction, you can infer any of the conjuncts

 $\frac{\alpha_1, \ \alpha_2, \cdots, \ \alpha_n}{\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n}$ And Introduction: From a list of sentences, you can infer their conjunction

And Elimination: From a conjunction, you can infer any of the conjuncts

 $\alpha_1, \ \alpha_2, \cdots, \ \alpha_n$ $\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n$

 $\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$

And Introduction: From a list of sentences, you can infer their conjunction

 $\frac{\alpha \wedge \beta, \quad \neg \beta}{\alpha}$

Unit Resolution: If one of the disjuncts β of a disjunction is false, then for the disjunction to hold, the other disjunct α should be true

 $\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$ And Elimination: From a conjunction, you can infer any of the conjuncts $\frac{\alpha_1, \alpha_2, \cdots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}$ And Introduction: From a list of sentences, you can infer their conjunction

	$\alpha \wedge \beta$,	$\neg \beta$	
α			

Unit Resolution: If one of the disjuncts β of a disjunction is false, then for the disjunction to hold, the other disjunct α should be true

$\alpha \wedge \beta$,	$\neg\beta\wedge\gamma$	
$\alpha \wedge \gamma$		

Resolution: The formula β can't be both true and false. So if both $\alpha \land \beta$ and $\neg \beta \land \gamma$ hold, then one of α or γ should hold

 $\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$ And Elimination: From a conjunction, you can infer any of the conjuncts $\alpha_1, \ \alpha_2, \cdots, \ \alpha_n$ $\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n$ And Introduction: From a list of sentences, you can infer their conjunction $\alpha \wedge \beta$, $\neg \beta$ Unit Resolution: If one of the disjuncts β of a disjunction is false, then for the disjunction to hold, the other disjunct α should be true α $\begin{array}{c} \alpha \wedge \beta, \quad \neg \beta \wedge \gamma \\ \\ \alpha \wedge \gamma \end{array}$ Resolution: The formula β can't be both true and false. So if both $\alpha \wedge \beta$ and $\neg \beta \wedge \gamma$ hold, then one of α or γ should hold

And there are more inference rules