Symbolic Logic: An Introduction

Normal forms

What is a normal form?

- Normal forms are standardized ways to write Boolean formulas
- They are universal: they can express every Boolean formula
- Different normal forms admit different algorithmic advantages

A formula is said to be in negation normal form (NNF) if

- 1. Only atoms are allowed to be negated
- 2. The only Boolean connectives allowed are Λ, V, \neg

A formula is said to be in negation normal form (NNF) if

- 1. Only atoms are allowed to be negated
- 2. The only Boolean connectives allowed are Λ, V, \neg

Examples:

- Formulas in negation normal form: $P_1 \land \neg P_2, \neg P_1 \lor P_2$

A formula is said to be in negation normal form (NNF) if

- 1. Only atoms are allowed to be negated
- 2. The only Boolean connectives allowed are Λ, V, \neg

Examples:

- Formulas in negation normal form: $P_1 \land \neg P_2, \neg P_1 \lor P_2$
- Not in negation normal forms: $P_1 \rightarrow \neg P_2$

A formula is said to be in negation normal form (NNF) if

- 1. Only atoms are allowed to be negated
- 2. The only Boolean connectives allowed are Λ, V, \neg

Examples:

- Formulas in negation normal form: $P_1 \land \neg P_2, \neg P_1 \lor P_2$
- Not in negation normal forms: $P_1 \rightarrow \neg P_2$

These can be converted into NNF by

- Replacing implications and double implications using their definitions
- Using De Morgan's laws to push the negation inwards

A conjunctive normal form is a conjunction of disjunctions of literals $(l_{11} \lor l_{12} \lor \cdots) \land (l_{21} \lor l_{22} \lor \cdots) \land \cdots \land (l_{n1} \lor l_{n2} \lor \cdots)$

A conjunctive normal form is a conjunction of disjunctions of literals $(l_{11} \lor l_{12} \lor \cdots) \land (l_{21} \lor l_{22} \lor \cdots) \land \cdots \land (l_{n1} \lor l_{n2} \lor \cdots)$

Compactly

 $\bigwedge_{i} \left(\bigvee_{i=1}^{n_{j}} l_{ij} \right)$

A conjunctive normal form is a conjunction of disjunctions of literals $(l_{11} \lor l_{12} \lor \cdots) \land (l_{21} \lor l_{22} \lor \cdots) \land \cdots \land (l_{n1} \lor l_{n2} \lor \cdots)$

Compactly

The disjunction of literals is called a clause

A conjunctive normal form is a conjunction of disjunctions of literals $(l_{11} \lor l_{12} \lor \cdots) \land (l_{21} \lor l_{22} \lor \cdots) \land \cdots \land (l_{n1} \lor l_{n2} \lor \cdots)$

Compactly

 $\bigwedge \left(\bigvee_{i=1}^{n_j} l_{ij} \right)$

The disjunction of literals is called a clause

A conjunctive normal form is a conjunction of clauses

A conjunctive normal form is a conjunction of disjunctions of literals $(l_{11} \lor l_{12} \lor \cdots) \land (l_{21} \lor l_{22} \lor \cdots) \land \cdots \land (l_{n1} \lor l_{n2} \lor \cdots)$

Compactly

 $\bigwedge \left(\bigvee_{i=1}^{n} l_{ij} \right)$

Validity is easy to check in a CNF (why?)

The disjunction of literals is called a clause

A conjunctive normal form is a conjunction of clauses

A disjunctive normal form is a disjunction of conjunctions of literals $(l_{11} \wedge l_{12} \wedge \cdots) \vee (l_{21} \wedge l_{22} \wedge \cdots) \vee \cdots \vee (l_{n1} \wedge l_{n2} \wedge \cdots)$

A disjunctive normal form is a disjunction of conjunctions of literals $(l_{11} \land l_{12} \land \cdots) \lor (l_{21} \land l_{22} \land \cdots) \lor \cdots \lor (l_{n1} \land l_{n2} \land \cdots)$

Compactly

 $\bigvee_{i} \left(\bigwedge_{i=1}^{n_{j}} l_{ij} \right)$

A disjunctive normal form is a disjunction of conjunctions of literals $(l_{11} \land l_{12} \land \cdots) \lor (l_{21} \land l_{22} \land \cdots) \lor \cdots \lor (l_{n1} \land l_{n2} \land \cdots)$

Compactly

The conjunction of literals is called a term

A disjunctive normal form is a disjunction of conjunctions of literals $(l_{11} \land l_{12} \land \cdots) \lor (l_{21} \land l_{22} \land \cdots) \lor \cdots \lor (l_{n1} \land l_{n2} \land \cdots)$

Compactly

 $\bigvee \left(\bigwedge_{i=1}^{N_j} l_{ij} \right)$

The conjunction of literals is called a term

A disjunctive normal form is a disjunction of terms

A disjunctive normal form is a disjunction of conjunctions of literals $(l_{11} \land l_{12} \land \cdots) \lor (l_{21} \land l_{22} \land \cdots) \lor \cdots \lor (l_{n1} \land l_{n2} \land \cdots)$

Compactly

 $\bigvee \left(\bigwedge_{i=1}^{N_j} l_{ij} \right)$

Satisfiability is easy to check in a DNF (why?)

The conjunction of literals is called a term

A disjunctive normal form is a disjunction of terms

An example illustrating normal forms

Consider the formula $A \rightarrow (B \land C)$

```
In CNF, it is (\neg A \lor B) \land (\neg A \lor B)
```

```
In DNF, it is \neg A \lor (B \land C)
```

Both of these are in NNFs

- The negation normal form is not unique