Symbolic Logic: An Introduction

Propositional Logic: Satisfiability & Validity

A formula F is said to be **satisfiable** if there exists some interpretation I such that $I \models F$

A formula F is said to be **satisfiable** if there exists some interpretation I such that $I \models F$

If no such interpretation exists, then the formula is said to be **unsatisfiable**

A formula F is said to be **satisfiable** if there exists some interpretation I such that $I \models F$

If no such interpretation exists, then the formula is said to be **unsatisfiable**

Examples:

The formula $p \rightarrow q$ is satisfiable

```
The interpretation I = \{p \mapsto \mathbf{true}, q \mapsto \mathbf{true}\} is a model for the formula
```

A formula F is said to be **satisfiable** if there exists some interpretation I such that $I \models F$

If no such interpretation exists, then the formula is said to be **unsatisfiable**

Examples:

The formula $p \rightarrow q$ is satisfiable

The interpretation $I = \{p \mapsto \mathbf{true}, q \mapsto \mathbf{true}\}$ is a model for the formula The formula $p \leftrightarrow \neg p$ is **unsatisfiable**

Every interpretation (there are only two) assigns value **false** to the formula

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

Example: The formula $(p \rightarrow \neg q) \leftrightarrow (\neg p \lor \neg q)$ is valid

How do we show this?

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

Example: The formula $(p \rightarrow \neg q) \leftrightarrow (\neg p \lor \neg q)$ is valid

How do we show this? One approach: Write out the truth table

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

p	q	
true	true	
true	false	
false	true	
false	false	

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

p	q	$\mathbf{F}_1 = (p \to \neg q)$	
true	true	false	
true	false	true	
false	true	true	
false	false	true	

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

p	q	$\mathbf{F}_1 = (p \to \neg q)$	$\mathbf{F}_2 = (\neg p \lor \neg q)$
true	true	false	false
true	false	true	true
false	true	true	true
false	false	true	true

A formula F is called valid if <u>any</u> interpretation entails the formula That is, for any interpretation I, we have $I \models F$ Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

p	q	$\mathbf{F}_1 = (p \to \neg q)$	$\mathbf{F}_2 = (\neg p \lor \neg q)$	$F_1 \leftrightarrow F_2$
true	true	false	false	true
true	false	true	true	true
false	true	true	true	true
false	false	true	true	true

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Every interpretation entails the formula

No interpretation that entails it

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

We need to prove the "if" part and the "only if" part separately

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

If a formula *F* is valid, then... ...every interpretation is a model for it.

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

If a formula F is valid, then...

...every interpretation is a model for it. That is, there is *no model* for its negation $\neg F$.

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

If a formula *F* is valid, then...

...every interpretation is a model for it. That is, there is *no model* for its negation $\neg F$. That is, the negation is unsatisfiable

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

The "only if" part of the proof

If a formula *F* is valid, then...

...every interpretation is a model for it. That is, there is *no model* for its negation $\neg F$. That is, the negation is unsatisfiable

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

If a formula *F* is valid, then...

...every interpretation is a model for it. That is, there is *no model* for its negation $\neg F$. That is, the negation is unsatisfiable The "only if" part of the proof

If a formula *F* is **unsatisfiable**, then... ...it does not have any interpretation.

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

If a formula *F* is valid, then...

...every interpretation is a model for it. That is, there is *no model* for its negation $\neg F$. That is, the negation is unsatisfiable The "only if" part of the proof

If a formula F is unsatisfiable, then... ...it does not have any interpretation. That is, every interpretation is a model for $\neg F$.

There a duality between satisfiability and validity

Any formula F is valid if, and only if, its negation $\neg F$ is unsatisfiable

Why? The proof is easy

The "if" part of the proof

If a formula *F* is valid, then...

...every interpretation is a model for it. That is, there is *no model* for its negation $\neg F$. That is, the negation is unsatisfiable The "only if" part of the proof

If a formula F is unsatisfiable, then... ...it does not have any interpretation. That is, every interpretation is a model for $\neg F$. That is, the negation $\neg F$ is valid.

Suppose we have two propositional formula F and α

Suppose we have two propositional formula F and α

We say that F entails α , or that α is a logical consequence of F, if there is no interpretation where F is **true** and α is **false**

We write it as $F \vDash \alpha$

Suppose we have two propositional formula F and α

We say that F entails α , or that α is a logical consequence of F, if there is no interpretation where F is **true** and α is **false**

We write it as $F \vDash \alpha$

Some examples of logical entailment:

 $P_1 \wedge P_2 \models P_1$

Suppose we have two propositional formula F and α

We say that F entails α , or that α is a logical consequence of F, if there is no interpretation where F is **true** and α is **false**

We write it as $F \vDash \alpha$

Some examples of logical entailment:

$$\begin{array}{lll} P_1 \wedge P_2 & \vDash & P_1 \\ P_1 \to P_2 & \vDash & (P_1 \wedge P_3) \to P_2 \end{array}$$

Suppose we have two propositional formula F and α

We say that F entails α , or that α is a logical consequence of F, if there is no interpretation where F is **true** and α is **false**

We write it as $F \vDash \alpha$

Some examples of logical entailment:

$$\begin{array}{rccc} P_1 \wedge P_2 & \vDash & P_1 \\ P_1 \rightarrow P_2 & \vDash & (P_1 \wedge P_3) \rightarrow P_2 \\ \left((P_1 \wedge P_2) \rightarrow P_3 \right) \rightarrow P_4 & \vDash & (P_1 \wedge P_3) \rightarrow P_4 \end{array}$$

Theorem:

For any two propositional formulas F and α , the following statements are equivalent:

Theorem:

For any two propositional formulas F and α , the following statements are equivalent:

1. The formula F entails the formula α . That is $F \vDash \alpha$

Theorem:

For any two propositional formulas F and α , the following statements are equivalent:

- 1. The formula *F* entails the formula α . That is $F \vDash \alpha$
- 2. The formula $F \rightarrow \alpha$ is valid

Theorem:

For any two propositional formulas F and α , the following statements are equivalent:

- 1. The formula *F* entails the formula α . That is $F \vDash \alpha$
- 2. The formula $F \rightarrow \alpha$ is valid
- 3. The formula $F \wedge \neg \alpha$ is unsatisfiable

Theorem:

For any two propositional formulas F and α , the following statements are equivalent:

- 1. The formula *F* entails the formula α . That is $F \vDash \alpha$
- 2. The formula $F \rightarrow \alpha$ is valid
- 3. The formula $F \land \neg \alpha$ is unsatisfiable

Key takeaway

It is enough if we have algorithms for satisfiability. Other properties can follow from them