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Propositional Logic: Satisfiability & Validity
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Satisfiable formulas

A formula 𝐹 is said to be satisfiable if there exists some interpretation 𝐼 
such that I ⊨ 𝐹

If no such interpretation exists, then the formula is said to be unsatisfiable

Examples:
The formula 𝑝 → 𝑞 is satisfiable

The interpretation 𝐼 = 𝑝 ↦ 𝐭𝐫𝐮𝐞, 𝑞 ↦ 𝐭𝐫𝐮𝐞  
is a model for the formula

The formula 𝑝 ↔ ¬𝑝 is unsatisfiable

Every interpretation (there are only two) 
assigns value 𝐟𝐚𝐥𝐬𝐞 to the formula
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Valid formulas

A formula 𝐹 is called valid if any interpretation entails the formula
That is, for any interpretation 𝐼, we have I ⊨ 𝐹
Valid formulas are tautologies

A formula that is not valid, but satisfiable is called contingent

Example: The formula 𝑝 → ¬𝑞 ↔ ¬𝑝 ∨ ¬𝑞  is valid

6

𝑝 𝑞 F! = 𝑝 → ¬𝑞 F" = ¬𝑝 ∨ ¬𝑞 F! ↔ 𝐹"
true true false false true

true false true true true

false true true true true

false false true true true
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Satisfiability & Validity

There a duality between satisfiability and validity

Any formula 𝐹 is valid if, and only if, its negation ¬𝐹 is unsatisfiable
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Every interpretation 
entails the formula

No interpretation 
that entails it



Satisfiability & Validity

There a duality between satisfiability and validity

Any formula 𝐹 is valid if, and only if, its negation ¬𝐹 is unsatisfiable

Why? The proof is easy

16

We need to prove the “if” part and the “only if” part separately
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17

If a formula 𝐹	is valid, then…
…every interpretation is a model for it. 
That is, there is no model for its negation ¬𝐹.
That is, the negation is unsatisfiable

The “if”  part of the proof
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Logical Entailment
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Logical entailment

Suppose we have two propositional formula 𝐹 and 𝛼

We say that 𝐹 entails 𝛼, or that 𝛼 is a logical consequence of 𝐹, if there is no 
interpretation where 𝐹 is true and 𝛼 is false

We write it as 𝐹 ⊨ 𝛼

Some examples of logical entailment:  
	 𝑃! ∧ 𝑃" 	 ⊨ 	 𝑃!

	 𝑃! → 𝑃" 	 ⊨ 	 𝑃! ∧ 𝑃# → 𝑃"
𝑃! ∧ 𝑃" → 𝑃# → 𝑃$ 	 ⊨ 	 𝑃! ∧ 𝑃# → 𝑃$
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Entailments, validity and satisfiability are related

Theorem:
For any two propositional formulas 𝐹 and 𝛼, the following statements are 
equivalent:
1. The formula 𝐹 entails the formula 𝛼. That is F ⊨ 𝛼
2. The formula F → 𝛼 is valid
3. The formula F ∧ ¬𝛼 is unsatisfiable

Key takeaway
It is enough if we have algorithms for satisfiability. Other properties can follow 
from them
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