
Logic as Loss: T-norm losses

The idea of the “logic as loss” framework

1

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

2

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

3

Let us revisit propositional logic

Propositional logic is a language comprising of

1. A set of constants: {⊤, ⊥}
– One of these values is considered true

2. Propositional variables whose value can take any of the constant values

3. A set of connectives: ¬,∧,∨,→,↔

4

Semantics of propositional logic

Formally defined via the semantics of its constants and the connectives

Key concept: interpretation = assignment to variables

5

Semantics of propositional logic

Formally defined via the semantics of its constants and the connectives

Key concept: interpretation = assignment to variables
Constants: Every interpretation entails ⊤, no interpretation entails ⊥

6

Semantics of propositional logic

Formally defined via the semantics of its constants and the connectives

Key concept: interpretation = assignment to variables
Constants: Every interpretation entails ⊤, no interpretation entails ⊥

Connectives: Each connective has its own semantics
(We have seen this before)
Example: for conjunctions

An interpretation 𝐼 is a model for a formula 𝐹! ∧ 𝐹" if, and only if, the interpretation
is a model for the formula 𝐹! and a model for the formula 𝐹"

𝐼 ⊨ 𝐹! ∧ 𝐹"	 iff	 𝐼 ⊨ 𝐹!	and	𝐼 ⊨ 𝐹"

7

Another way to define semantics: Logical matrices

8

(Basically a different way to write down truth tables)

¬
⊤ ⊥
⊥ ⊤

∧ ⊤ ⊥
⊤ ⊤ ⊤
⊥ ⊤ ⊥

∨ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊥

→ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊤ ⊤

↔ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊤

Negation Conjunction Disjunction Material
implication

Biconditional

Another way to define semantics: Logical matrices

9

(Basically a different way to write down truth tables)

¬
⊤ ⊥
⊥ ⊤

∧ ⊤ ⊥
⊤ ⊤ ⊤
⊥ ⊤ ⊥

∨ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊥

→ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊤ ⊤

↔ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊤

Negation Conjunction Disjunction Material
implication

Biconditional

⊤ ∧⊥=⊥

Another way to define semantics: Logical matrices

10

(Basically a different way to write down truth tables)

¬
⊤ ⊥
⊥ ⊤

∧ ⊤ ⊥
⊤ ⊤ ⊤
⊥ ⊤ ⊥

∨ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊥

→ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊤ ⊤

↔ ⊤ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊤

Negation Conjunction Disjunction Material
implication

Biconditional

⊤ ∧⊥=⊥

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

11

The sea battle problem

Consider the following two sentences:
A: There will be a sea battle tomorrow
B: There will not be a sea battle tomorrow

Clearly A and B cannot both be true

But how can we assign a truth value to either one of them today?

12

The sea battle problem

Consider the following two sentences:
A: There will be a sea battle tomorrow
B: There will not be a sea battle tomorrow

Clearly A and B cannot both be true

But how can we assign a truth value to either one of them today?

The same problem doesn’t apply to past or present events
A’: There was a sea battle yesterday
B’: There was no sea battle yesterday

13

Clearly only one
of these is true

The sea battle problem

Consider the following two sentences:
A: There will be a sea battle tomorrow
B: There will not be a sea battle tomorrow

Clearly A and B cannot both be true

But how can we assign a truth value to either one of them today?

This is also called the problem of future contingents
Statements about future events, actions, etc that are neither impossible nor inevitable

14

This example and the problem goes back to
Aristotle’s “On Interpretation” (Chapter 9)

Several attempts over the centuries to address
this within propositional logic

An attempt at a solution

The problem arises because propositional logic does not have a place for ideas like
“maybe true”, “maybe false”, “don’t know”, etc.

Jan Łukasiewicz (1920): Let’s add a third constant denoting “possible” and extend the
meaning of the standard operators to define

Łukasiewicz’s three-valued logic

15

Łukasiewicz’s three-valued logic: Ł!

A language comprising of:

1. A set of constants: {0,½, 1}
– Only the constant 1 is designated as true
– The constant ½ could be interpreted as “possible” or “as of now undetermined”
– The constant 0 is false

2. Propositional variables whose value can take any of the constant values

3. A set of connectives: ¬,→

16

Semantics of the connectors in Ł!

17

We can describe the connectives using the logic matrices as before.

This time, there will be three possible inputs for each operand

Semantics of the connectors in Ł!

18

¬
1 0
½ ½
0 1

Semantics of the connectors in Ł!

19

¬
1 0
½ ½
0 1

¬𝑥 = 1 − 𝑥

Semantics of the connectors in Ł!

20

¬
1 0
½ ½
0 1

→ 1 ½ 0
1 1 ½ 0
½ 1 1 ½
0 1 1 1

¬𝑥 = 1 − 𝑥

Semantics of the connectors in Ł!

21

¬
1 0
½ ½
0 1

→ 1 ½ 0
1 1 ½ 0
½ 1 1 ½
0 1 1 1

¬𝑥 = 1 − 𝑥 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

Semantics of the connectors in Ł!

22

¬
1 0
½ ½
0 1

→ 1 ½ 0
1 1 ½ 0
½ 1 1 ½
0 1 1 1

¬𝑥 = 1 − 𝑥 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

What do these connectives mean?

Semantics of the connectors in Ł!

23

¬
1 0
½ ½
0 1

→ 1 ½ 0
1 1 ½ 0
½ 1 1 ½
0 1 1 1

¬𝑥 = 1 − 𝑥 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

There are other three-valued logics,
which have their own set of connectives

There are also four-valued logics, nine-
value logics and finite-valued logics

What do these connectives mean?

Łukasiewicz logic: An infinite valued logic

A language Ł comprising of:

1. An infinite set of constants: [0, 1]
– Only the value 1 is designated as true
– The value 0 is false
– The values in between reflect degrees of truth

2. Propositional variables whose value can take any of the constant values

3. A set of connectives: →

24

Łukasiewicz logic: An infinite valued logic

A language Ł comprising of:

1. An infinite set of constants: [0, 1]
– Only the value 1 is designated as true
– The value 0 is false
– The values in between reflect degrees of truth

2. Propositional variables whose value can take any of the constant values

3. A set of connectives: →

25

Degree of truth

In classical logic, all statements are unequivocally true or false

Is this always the case?

Can we have statements in real life that are not unambiguously true or false?

Let’s brainstorm

26

Degree of truth

In classical logic, all statements are unequivocally true or false

What about sentences like:
• Salt Lake City is a large city
• Kalamazoo is a large city

• Bach’s Concerto No. 1 is a beautiful piece of music
• Iron Maiden’s Fear of the Dark is a beautiful piece of music

• Aristotle was a heavy baby when he was born
• Aristotle was a small baby when he was born

27

Degree of truth

In classical logic, all statements are unequivocally true or false

What about sentences like:
• Salt Lake City is a large city
• Kalamazoo is a large city

• Bach’s Concerto No. 1 is a beautiful piece of music
• Iron Maiden’s Fear of the Dark is a beautiful piece of music

• Aristotle was a heavy baby when he was born
• Aristotle was a small baby when he was born

28

In each case, the answer is subjective.

The statements are true to some degree

Degree of truth

In classical logic, all statements are unequivocally true or false

What about sentences like:
• Salt Lake City is a large city
• Kalamazoo is a large city

• Bach’s Concerto No. 1 is a beautiful piece of music
• Iron Maiden’s Fear of the Dark is a beautiful piece of music

• Aristotle was a heavy baby when he was born
• Aristotle was a small baby when he was born

29

In each case, the answer is subjective.

The statements are true to some degree

Degree of truth is not the same as degree
of belief

Degree of belief describes the probability
that some statement is true or not

Degree of truth describes the vagueness
inherent in the truth value of a statement

Łukasiewicz logic: An infinite valued logic

A language Ł	comprising of:

1. An infinite set of constants: [0, 1]
– Only the value 1 is designated as true
– The value 0 is false
– The values in between reflect degrees of truth

2. Propositional variables whose value can take any of the constant values

3. A set of connectives: →

30

Łukasiewicz logic: An infinite valued logic

A language Ł comprising of:

1. An infinite set of constants: [0, 1]
– Only the value 1 is designated as true
– The value 0 is false
– The values in between reflect degrees of truth

2. Propositional variables whose value can take any of the constant values

3. A set of connectives: →

31

Let’s see the definition of this connective next

Semantics of the connectors in Ł

Same as the definition of implication in the three-valued logic Ł5

We can’t write a logic matrice because the connectives operate on an infinite set.
Instead, we write the definition as function:

𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

32

Semantics of the connectors in Ł

Same as the definition of implication in the three-valued logic Ł5

We can’t write a logic matrice because the connectives operate on an infinite set.
Instead, we write the definition as function:

𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

But what about the other connectives?

33

Semantics of the connectors in Ł

Same as the definition of implication in the three-valued logic Ł5

We can’t write a logic matrice because the connectives operate on an infinite set.
Instead, we write the definition as function:

𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

But what about the other connectives?
 They can all be defined in terms of the implication

34

Other connectives from the implication →

¬𝑥	is equivalent to 𝑥 →⊥

𝑥 ∨ 𝑦	is equivalent to ¬𝑥 → 𝑦

𝑥 ∧ 𝑦	is equivalent to ¬ ¬𝑥 ∨ ¬𝑦 by De Morgan’s law

35

Easy to verify all of these are true for
the propositional case

We can write truth tables

Other connectives from the implication →

¬𝑥	is equivalent to 𝑥 →⊥

𝑥 ∨ 𝑦	is equivalent to ¬𝑥 → 𝑦

𝑥 ∧ 𝑦	is equivalent to ¬ ¬𝑥 ∨ ¬𝑦 by De Morgan’s law

36Side note: There are other ways to define the disjunction too. What we have here is called
the strong disjunction in some places, and this wasn’t in Łukasiewicz’s original work

Easy to verify all of these are true for
the propositional case

We can write truth tables

Other connectives from the implication →

¬𝑥	is equivalent to 𝑥 →⊥

𝑥 ∨ 𝑦	is equivalent to ¬𝑥 → 𝑦

𝑥 ∧ 𝑦	is equivalent to ¬ ¬𝑥 ∨ ¬𝑦 by De Morgan’s law

37

Łukasiewicz implication: 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

We can work out the full set of
operators using these definitions

Other connectives from the implication →

¬𝑥	is equivalent to 𝑥 →⊥

𝑥 ∨ 𝑦	is equivalent to ¬𝑥 → 𝑦

𝑥 ∧ 𝑦	is equivalent to ¬ ¬𝑥 ∨ ¬𝑦 by De Morgan’s law

38

Łukasiewicz implication: 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

min 1, 1 − 𝑥 + 0 = min 1,1 − 𝑥 = 1 − 𝑥	

Other connectives from the implication →

¬𝑥	is equivalent to 𝑥 →⊥

𝑥 ∨ 𝑦	is equivalent to ¬𝑥 → 𝑦

𝑥 ∧ 𝑦	is equivalent to ¬ ¬𝑥 ∨ ¬𝑦 by De Morgan’s law

39

Łukasiewicz implication: 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

min 1, 1 − (1 − 𝑥) + 𝑦 = min 1, 𝑥 + 𝑦

min 1, 1 − 𝑥 + 0 = min 1,1 − 𝑥 = 1 − 𝑥	

Other connectives from the implication →

¬𝑥	is equivalent to 𝑥 →⊥

𝑥 ∨ 𝑦	is equivalent to ¬𝑥 → 𝑦

𝑥 ∧ 𝑦	is equivalent to ¬ ¬𝑥 ∨ ¬𝑦 by De Morgan’s law

40

Łukasiewicz implication: 𝑥 → 𝑦 = min 1, 1 − 𝑥 + 𝑦

min 1, 1 − (1 − 𝑥) + 𝑦 = min 1, 𝑥 + 𝑦

min 1, 1 − 𝑥 + 0 = min 1,1 − 𝑥 = 1 − 𝑥	

1 − min 1, 1 − 𝑥 + 1 − 𝑦 = max 0, 𝑥 + 𝑦 − 1

Łukasiewicz logic

Atoms are numbers between 0 and 1, representing degrees of truth, or
variables

Connectives defined as

41

Negation ¬𝑥 1 − 𝑥
Conjunction 𝑥 ∧ 𝑦 max 0, 𝑥 + 𝑦 − 1
Disjunction 𝑥 ∨ 𝑦 min(1, 𝑥 + 𝑦)
Implication 𝑥 → 𝑦 min 1, 1 − 𝑥 + 𝑦

This logic is a
specific instance
of t-norm logics
or fuzzy logics

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

42

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

43

As we see the properties, check
if they hold for conjunctions

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

44

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

2. Associativity: 𝑇 𝑥, 𝑇 𝑦, 𝑧 = 𝑇 𝑇 𝑥, 𝑦 , 𝑧

45

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

2. Associativity: 𝑇 𝑥, 𝑇 𝑦, 𝑧 = 𝑇 𝑇 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

46

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

2. Associativity: 𝑇 𝑥, 𝑇 𝑦, 𝑧 = 𝑇 𝑇 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

4. Identity: 𝑇 𝑥, 1 = 𝑥

47

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

2. Associativity: 𝑇 𝑥, 𝑇 𝑦, 𝑧 = 𝑇 𝑇 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

4. Identity: 𝑇 𝑥, 1 = 𝑥

48

There are an infinite number of functions
that satisfy these properties

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

2. Associativity: 𝑇 𝑥, 𝑇 𝑦, 𝑧 = 𝑇 𝑇 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

4. Identity: 𝑇 𝑥, 1 = 𝑥

49

There are an infinite number of functions
that satisfy these properties

Triangular norms (t-norms)

A t-norm is a generalization of a conjunction to the infinite valued case

Any function 𝑇: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝑇 𝑥, 𝑦 = 𝑇(𝑦, 𝑥)

2. Associativity: 𝑇 𝑥, 𝑇 𝑦, 𝑧 = 𝑇 𝑇 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

4. Identity: 𝑇 𝑥, 1 = 𝑥

50

There are an infinite number of functions
that satisfy these properties

We have already seen one of them:
The Łukasiewicz conjunction

Fundamental t-norms

Three t-norms are called the fundamental t-norms

1. Łukasiewicz t-norm: ∧9 𝑥, 𝑦 = max 0, 𝑥 + 𝑦 − 1

2. Gödel t-norm: ∧: 𝑥, 𝑦 = min 𝑥, 𝑦

3. Product t-norm: ∧; 𝑥, 𝑦 = 𝑥𝑦

51

Conjunction : t-norm :: Disjunction : t-conorm

Like t-norms, we have t-conorms which generalize disjunctions to the infinite valued case

Any function 𝐶: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

52

As we see the properties, check
if they hold for disjunctions

Conjunction : t-norm :: Disjunction : t-conorm

Like t-norms, we have t-conorms which generalize disjunctions to the infinite valued case

Any function 𝐶: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝐶 𝑥, 𝑦 = 𝐶(𝑦, 𝑥)

53

Conjunction : t-norm :: Disjunction : t-conorm

Like t-norms, we have t-conorms which generalize disjunctions to the infinite valued case

Any function 𝐶: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝐶 𝑥, 𝑦 = 𝐶(𝑦, 𝑥)

2. Associativity: 𝐶 𝑥, 𝐶 𝑦, 𝑧 = 𝐶 𝐶 𝑥, 𝑦 , 𝑧

54

Conjunction : t-norm :: Disjunction : t-conorm

Like t-norms, we have t-conorms which generalize disjunctions to the infinite valued case

Any function 𝐶: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝐶 𝑥, 𝑦 = 𝐶(𝑦, 𝑥)

2. Associativity: 𝐶 𝑥, 𝐶 𝑦, 𝑧 = 𝐶 𝐶 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

55

Conjunction : t-norm :: Disjunction : t-conorm

Like t-norms, we have t-conorms which generalize disjunctions to the infinite valued case

Any function 𝐶: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝐶 𝑥, 𝑦 = 𝐶(𝑦, 𝑥)

2. Associativity: 𝐶 𝑥, 𝐶 𝑦, 𝑧 = 𝐶 𝐶 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

4. Identity: 𝑇 𝑥, 0 = 𝑥

56

Conjunction : t-norm :: Disjunction : t-conorm

Like t-norms, we have t-conorms which generalize disjunctions to the infinite valued case

Any function 𝐶: 0,1 ×[0,1] → 0,1 that satisfies the following properties is a t-norm

1. Commutativity: 𝐶 𝑥, 𝑦 = 𝐶(𝑦, 𝑥)

2. Associativity: 𝐶 𝑥, 𝐶 𝑦, 𝑧 = 𝐶 𝐶 𝑥, 𝑦 , 𝑧

3. Monotonicity: For any 𝑥, 𝑦 such that 𝑥 ≤ 𝑦, we have 𝑇 𝑥, 𝑧 ≤ 𝑇 𝑦, 𝑧

4. Identity: 𝑇 𝑥, 0 = 𝑥

57

There are an infinite number of functions
that satisfy these properties

We have already seen one of them:
The Łukasiewicz disjunction

Every t-norm has an associated t-conorm

𝐶 𝑥, 𝑦 = 1 − 𝑇(1 − 𝑥, 1 − 𝑦)
This behaves like the De Morgan’s rule for the t-norm
 (assuming that the negation ¬𝑥 is equivalent to 1 − 𝑥)

This gives us the three fundamental t-conforms

58

Every t-norm has an associated t-conorm

𝐶 𝑥, 𝑦 = 1 − 𝑇(1 − 𝑥, 1 − 𝑦)
This behaves like the De Morgan’s rule for the t-norm
 (assuming that the negation ¬𝑥 is equivalent to 1 − 𝑥)

This gives us the three fundamental t-conforms
1. Łukasiewicz t-conorm: ∨6 𝑥, 𝑦 = min 1, 𝑥 + 𝑦

59

Every t-norm has an associated t-conorm

𝐶 𝑥, 𝑦 = 1 − 𝑇(1 − 𝑥, 1 − 𝑦)
This behaves like the De Morgan’s rule for the t-norm
 (assuming that the negation ¬𝑥 is equivalent to 1 − 𝑥)

This gives us the three fundamental t-conforms
1. Łukasiewicz t-conorm: ∨6 𝑥, 𝑦 = min 1, 𝑥 + 𝑦

2. Gödel t-conorm: ∨7 𝑥, 𝑦 = max 𝑥, 𝑦

60

Every t-norm has an associated t-conorm

𝐶 𝑥, 𝑦 = 1 − 𝑇(1 − 𝑥, 1 − 𝑦)
This behaves like the De Morgan’s rule for the t-norm
 (assuming that the negation ¬𝑥 is equivalent to 1 − 𝑥)

This gives us the three fundamental t-conforms
1. Łukasiewicz t-conorm: ∨6 𝑥, 𝑦 = min 1, 𝑥 + 𝑦

2. Gödel t-conorm: ∨7 𝑥, 𝑦 = max 𝑥, 𝑦

3. Product t-conorm: ∨8 𝑥, 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦

61

Implications can be complicated

There are many different ways to define the → operation for a t-norm

62

Implications can be complicated

There are many different ways to define the → operation for a t-norm

One approach: The S-implication
 In Boolean logic, we have 𝑥 → 𝑦 ≡ ¬𝑥 ∨ 𝑦

63

Implications can be complicated

There are many different ways to define the → operation for a t-norm

One approach: The S-implication
 In Boolean logic, we have 𝑥 → 𝑦 ≡ ¬𝑥 ∨ 𝑦

Given a t-norm 𝑇, we know that its t-conorm 𝐶 that represents the disjunction

64

Implications can be complicated

There are many different ways to define the → operation for a t-norm

One approach: The S-implication
 In Boolean logic, we have 𝑥 → 𝑦 ≡ ¬𝑥 ∨ 𝑦

Given a t-norm 𝑇, we know that its t-conorm 𝐶 that represents the disjunction
We generally assume that the negation ¬𝑥 is 1 − 𝑥

65

Implications can be complicated

There are many different ways to define the → operation for a t-norm

One approach: The S-implication
 In Boolean logic, we have 𝑥 → 𝑦 ≡ ¬𝑥 ∨ 𝑦

Given a t-norm 𝑇, we know that its t-conorm 𝐶 that represents the disjunction
We generally assume that the negation ¬𝑥 is 1 − 𝑥

 This gives us a definition of the implication:
𝑥 →# 𝑦 = 𝐶(1 − 𝑥, 𝑦)

66

Implications can be complicated

There are many different ways to define the → operation for a t-norm

67

Implications can be complicated

There are many different ways to define the → operation for a t-norm

Another approach: The R-implication, which calls the implication a residuum

68
(There is a formal definition, but that is too much of a distraction for now)

Implications can be complicated

There are many different ways to define the → operation for a t-norm

Another approach: The R-implication, which calls the implication a residuum

Captures the following intuition:
Given a t-norm that defines the conjunction, we want 𝑥 ∧ 𝑥 → 𝑦 to be less than 𝑦

69
(There is a formal definition, but that is too much of a distraction for now)

Implications can be complicated

There are many different ways to define the → operation for a t-norm

Another approach: The R-implication, which calls the implication a residuum

Captures the following intuition:
Given a t-norm that defines the conjunction, we want 𝑥 ∧ 𝑥 → 𝑦 to be less than 𝑦

There may be many functions that satisfy this criterion. Pick the one that makes the value of
𝑥 → 𝑦 maximum

70
(There is a formal definition, but that is too much of a distraction for now)

From Boolean logic to t-norm logics

Triangular norms provide systematic generalizations of logic
Some are continuous and sub-differentiable

Klement, Erich Peter, Radko Mesiar, and Endre Pap. Triangular norms. Vol. 8. 2013.

Boolean logic Product Gödel Łukasiewicz

Not ¬𝐴 1 − 𝑎 1 − 𝑎 1 − 𝑎
And 𝐴 ∧ 𝐵 𝑎𝑏 min 𝑎, 𝑏 max 0, 𝑎 + 𝑏 − 1
Or 𝐴 ∨ 𝐵 𝑎 + 𝑏 − 𝑎𝑏 max 𝑎, 𝑏 min 1, 𝑎 + 𝑏
Implies 𝐴 → 𝐵 min 1,

𝑏
𝑎 B1	 if	𝑏 > 𝑎

𝑏 else
min 1, 1 − 𝑎 + 𝑏

Inputs, outputs live in [0,1]

Basically rectified
linear units

71

From Boolean logic to t-norm logics

Triangular norms provide systematic generalizations of logic
Some are continuous and sub-differentiable

Klement, Erich Peter, Radko Mesiar, and Endre Pap. Triangular norms. Vol. 8. 2013.

Boolean logic Product Gödel Łukasiewicz

Not ¬𝐴 1 − 𝑎 1 − 𝑎 1 − 𝑎
And 𝐴 ∧ 𝐵 𝑎𝑏 min 𝑎, 𝑏 max 0, 𝑎 + 𝑏 − 1
Or 𝐴 ∨ 𝐵 𝑎 + 𝑏 − 𝑎𝑏 max 𝑎, 𝑏 min 1, 𝑎 + 𝑏
Implies 𝐴 → 𝐵 min 1,

𝑏
𝑎 B1	 if	𝑏 > 𝑎

𝑏 else
min 1, 1 − 𝑎 + 𝑏

Inputs, outputs
live in {0,1} Inputs, outputs live in [0,1]

Basically rectified
linear units

72

From Boolean logic to t-norm logics

Triangular norms provide systematic generalizations of logic
Some are continuous and sub-differentiable

Klement, Erich Peter, Radko Mesiar, and Endre Pap. Triangular norms. Vol. 8. 2013.

Boolean logic Product Gödel Łukasiewicz

Not ¬𝐴 1 − 𝑎 1 − 𝑎 1 − 𝑎
And 𝐴 ∧ 𝐵 𝑎𝑏 min 𝑎, 𝑏 max 0, 𝑎 + 𝑏 − 1
Or 𝐴 ∨ 𝐵 𝑎 + 𝑏 − 𝑎𝑏 max 𝑎, 𝑏 min 1, 𝑎 + 𝑏
Implies 𝐴 → 𝐵 min 1,

𝑏
𝑎 B1	 if	𝑏 > 𝑎

𝑏 else
min 1, 1 − 𝑎 + 𝑏

Inputs, outputs
live in {0,1}

73

From Boolean logic to t-norm logics

Triangular norms provide systematic generalizations of logic
Some are continuous and sub-differentiable

Klement, Erich Peter, Radko Mesiar, and Endre Pap. Triangular norms. Vol. 8. 2013.

Boolean logic Product Gödel Łukasiewicz

Not ¬𝐴 1 − 𝑎 1 − 𝑎 1 − 𝑎
And 𝐴 ∧ 𝐵 𝑎𝑏 min 𝑎, 𝑏 max 0, 𝑎 + 𝑏 − 1
Or 𝐴 ∨ 𝐵 𝑎 + 𝑏 − 𝑎𝑏 max 𝑎, 𝑏 min 1, 𝑎 + 𝑏
Implies 𝐴 → 𝐵 min 1,

𝑏
𝑎 B1	 if	𝑏 > 𝑎

𝑏 else
min 1, 1 − 𝑎 + 𝑏

Inputs, outputs
live in {0,1} Inputs, outputs live in [0,1]

74

From Boolean logic to t-norm logics

Triangular norms provide systematic generalizations of logic
Some are continuous and sub-differentiable

Klement, Erich Peter, Radko Mesiar, and Endre Pap. Triangular norms. Vol. 8. 2013.

Boolean logic Product Gödel Łukasiewicz

Not ¬𝐴 1 − 𝑎 1 − 𝑎 1 − 𝑎
And 𝐴 ∧ 𝐵 𝑎𝑏 min 𝑎, 𝑏 max 0, 𝑎 + 𝑏 − 1
Or 𝐴 ∨ 𝐵 𝑎 + 𝑏 − 𝑎𝑏 max 𝑎, 𝑏 min 1, 𝑎 + 𝑏
Implies 𝐴 → 𝐵 min 1,

𝑏
𝑎 B1	 if	𝑏 > 𝑎

𝑏 else
min 1, 1 − 𝑎 + 𝑏

Inputs, outputs
live in {0,1} Inputs, outputs live in [0,1]

75

Importantly, all these operators agree with the Boolean operators at the boundaries

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

76

The idea of the “logic as loss” framework

77

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

The idea of the “logic as loss” framework

78

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

Instead of treating models
as functions that produce
probabilities, treat them as
functions that produce a
degree of truth associated
with the atomic statements

The idea of the “logic as loss” framework

79

What we want of our models

Minimize

Satisfy a set of invariant properties
(perhaps including properties about specific examples)

Constraint loss

Suppose we have a sentence 𝛼 in predicate logic, defined over some atoms
 𝑋 = 𝑋!, 𝑋", ⋯ , 𝑋#
Suppose each atom 𝑋$ is associated with a probability 𝑝$, possibly from a neural model

Let the vector 𝐩 denote the collection of probabilities 𝑝!, 𝑝", ⋯ , 𝑝# over the atoms

Our goal:
To define a loss function 𝐿(𝛼, 𝐩) such that minimizing it produces a model (and
associated probabilities) that assigns labels satisfying the sentence 𝛼

Let us formally state the setting

degree of truth

degrees of truth

degrees of truth

Instead of treating models
as functions that produce
probabilities, treat them as
functions that produce a
degree of truth associated
with the atomic statements

The recipe for converting a formula into a loss

Given:
• A statement 𝛼 composed of atoms 𝑋E, 𝑋F, ⋯ , 𝑋G
• Model predictions 𝑝E, 𝑝F, ⋯ , 𝑝G representing the degree of truth for each atom
• A choice of a t-norm (and its associated functions)

80

The recipe for converting a formula into a loss

Given:
• A statement 𝛼 composed of atoms 𝑋E, 𝑋F, ⋯ , 𝑋G
• Model predictions 𝑝E, 𝑝F, ⋯ , 𝑝G representing the degree of truth for each atom
• A choice of a t-norm (and its associated functions)

Step 1: Replace every Boolean operator with its relaxation

81

The recipe for converting a formula into a loss

Given:
• A statement 𝛼 composed of atoms 𝑋E, 𝑋F, ⋯ , 𝑋G
• Model predictions 𝑝E, 𝑝F, ⋯ , 𝑝G representing the degree of truth for each atom
• A choice of a t-norm (and its associated functions)

Step 1: Replace every Boolean operator with its relaxation

Step 2: Find models maximize the relaxation
 Or equivalently: Find models that minimize the negative log relaxation

82

The recipe for converting a formula into a loss

Given:
• A statement 𝛼 composed of atoms 𝑋E, 𝑋F, ⋯ , 𝑋G
• Model predictions 𝑝E, 𝑝F, ⋯ , 𝑝G representing the degree of truth for each atom
• A choice of a t-norm (and its associated functions)

Step 1: Replace every Boolean operator with its relaxation

Step 2: Find models maximize the relaxation
 Or equivalently: Find models that minimize the negative log relaxation

83

The loss function

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

84

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

85

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm.

86

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 ∧ 𝑏 = 𝑎𝑏

𝛼 = 𝑋! ∧ 𝑋" = 𝑝!𝑝"	

87

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 ∧ 𝑏 = 𝑎𝑏

𝛼 = 𝑋! ∧ 𝑋" = 𝑝!𝑝"	

Our goal: To find models that make the statement 𝛼 true.

88

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 ∧ 𝑏 = 𝑎𝑏

𝛼 = 𝑋! ∧ 𝑋" = 𝑝!𝑝"	

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve log relaxation as low as possible

89

Example 1: A conjunction

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 ∧ 𝑏 = 𝑎𝑏

𝛼 = 𝑋! ∧ 𝑋" = 𝑝!𝑝"	

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve log relaxation as low as possible

𝐿 𝛼, 𝑝 = − log 𝑝!𝑝" = −6
#$!

"

log 𝑝#

90

A conjunction with more variables

Suppose we have a set of labeled examples: 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ , 𝑥%, 𝑦%
Recall: The labeled example 𝑥$, 𝑦$ is a predicate that says

“Instance 𝑥$ 	has this label 𝑦$” = Label 𝑥$, 𝑦$

91

A conjunction with more variables

Suppose we have a set of labeled examples: 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ , 𝑥%, 𝑦%
Recall: The labeled example 𝑥$, 𝑦$ is a predicate that says

“Instance 𝑥$ 	has this label 𝑦$” = Label 𝑥$, 𝑦$
Our labeled dataset is a large conjunction

M
$&!

%

Label 𝑥$, 𝑦$

92

A conjunction with more variables

Suppose we have a set of labeled examples: 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ , 𝑥%, 𝑦%
Recall: The labeled example 𝑥$, 𝑦$ is a predicate that says

“Instance 𝑥$ 	has this label 𝑦$” = Label 𝑥$, 𝑦$
Our labeled dataset is a large conjunction

M
$&!

%

Label 𝑥$, 𝑦$

The goal of learning is to make this conjunction true. Or to maximize its relaxation

93

A conjunction with more variables

Suppose we have a set of labeled examples: 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ , 𝑥%, 𝑦%
Recall: The labeled example 𝑥$, 𝑦$ is a predicate that says

“Instance 𝑥$ 	has this label 𝑦$” = Label 𝑥$, 𝑦$
Our labeled dataset is a large conjunction

M
$&!

%

Label 𝑥$, 𝑦$

The goal of learning is to make this conjunction true. Or to maximize its relaxation

Or to minimize its negative log relaxation. Using the product t-norm gives us a loss

94

A conjunction with more variables

Suppose we have a set of labeled examples: 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ , 𝑥%, 𝑦%
Recall: The labeled example 𝑥$, 𝑦$ is a predicate that says

“Instance 𝑥$ 	has this label 𝑦$” = Label 𝑥$, 𝑦$
Our labeled dataset is a large conjunction

M
$&!

%

Label 𝑥$, 𝑦$

The goal of learning is to make this conjunction true. Or to maximize its relaxation

Or to minimize its negative log relaxation. Using the product t-norm gives us a loss

− log M
$&!

%

Label 𝑥$, 𝑦$ = − logP
$&!

%

model 𝑥$, 𝑦$ = −R
$

logmodel 𝑥$, 𝑦$

95

The degree of truth assigned by
the model to label 𝑦𝑖 for input 𝑥𝑖

A conjunction with more variables

Suppose we have a set of labeled examples: 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ , 𝑥%, 𝑦%
Recall: The labeled example 𝑥$, 𝑦$ is a predicate that says

“Instance 𝑥$ 	has this label 𝑦$” = Label 𝑥$, 𝑦$
Our labeled dataset is a large conjunction

M
$&!

%

Label 𝑥$, 𝑦$

The goal of learning is to make this conjunction true. Or to maximize its relaxation

Or to minimize its negative log relaxation. Using the product t-norm gives us a loss

− log M
$&!

%

Label 𝑥$, 𝑦$ = − logP
$&!

%

model 𝑥$, 𝑦$ = −R
$

logmodel 𝑥$, 𝑦$

96

This is the cross entropy loss

Example 1: A conjunction with a different t-norm

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm.

97

Example 1: A conjunction with a different t-norm

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 ∧ 𝑏 = max 0, 𝑎 + 𝑏 − 1

𝛼 = 𝑋! ∧ 𝑋" = max(0, 𝑝! + 𝑝" − 1)	

98

Example 1: A conjunction with a different t-norm

Consider the conjunction 𝛼 = 	𝑋! ∧ 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 ∧ 𝑏 = max 0, 𝑎 + 𝑏 − 1

𝛼 = 𝑋! ∧ 𝑋" = max(0, 𝑝! + 𝑝" − 1)	

The loss the negative of this expression (In this case, taking log need not help. Why?)

99

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

100

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

101

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

102

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

103

We could have used a different definition of the
implication. We will compare them later

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

𝛼 = 𝑋! → 𝑋" = min 1,
𝑝"
𝑝!

104

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

𝛼 = 𝑋! → 𝑋" = min 1,
𝑝"
𝑝!

Our goal: To find models that make the statement 𝛼 true.

105

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

𝛼 = 𝑋! → 𝑋" = min 1,
𝑝"
𝑝!

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve log relaxation as low as possible

106

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

𝛼 = 𝑋! → 𝑋" = min 1,
𝑝"
𝑝!

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve log relaxation as low as possible

𝐿 𝛼, 𝑝 = − logmin 1,
𝑝"
𝑝!

= max 0, log 𝑝! − log 𝑝"

107

This loss only has a positive
value when 𝑝! > 𝑝"

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Product t-norm with 𝑎 →% 𝑏 = min 1, &
'

𝛼 = 𝑋! → 𝑋" = min 1,
𝑝"
𝑝!

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve log relaxation as low as possible

𝐿 𝛼, 𝑝 = − logmin 1,
𝑝"
𝑝!

= max 0, log 𝑝! − log 𝑝"

108

This loss only has a positive
value when 𝑝! > 𝑝"
Imposes a preference that 𝑋"
should be more true than 𝑋!

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm.

109

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 →% 𝑏 = min 1,1 − 𝑎 + 𝑏
𝛼 = 𝑋! → 𝑋" = min 1,1 − 𝑝! + 𝑝"

110

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 →% 𝑏 = min 1,1 − 𝑎 + 𝑏
𝛼 = 𝑋! → 𝑋" = min 1,1 − 𝑝! + 𝑝"

Our goal: To find models that make the statement 𝛼 true.

111

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 →% 𝑏 = min 1,1 − 𝑎 + 𝑏
𝛼 = 𝑋! → 𝑋" = min 1,1 − 𝑝! + 𝑝"

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve relaxation as low as possible

𝐿 𝛼, 𝑝 = −min 1,1 − 𝑝! + 𝑝" = max −1, 𝑝! − 𝑝" − 1

112

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 →% 𝑏 = min 1,1 − 𝑎 + 𝑏
𝛼 = 𝑋! → 𝑋" = min 1,1 − 𝑝! + 𝑝"

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve relaxation as low as possible

𝐿 𝛼, 𝑝 = −min 1,1 − 𝑝! + 𝑝" = max −1, 𝑝! − 𝑝" − 1

Since constants don’t matter, we can write the loss as 𝐿 𝛼, 𝑝 = max 0, 𝑝! − 𝑝"

113

Example 2: Implication

Consider the implication 𝛼 = 	𝑋! → 𝑋" over two variables
Suppose a neural network produces degrees of truth 𝑝! and 𝑝" associated with 𝑋! and 𝑋"

Let us work out the t-norm losses associated with this relaxation of 𝛼	(written	as 𝛼).

First, we need to pick a t-norm. Let’s choose Łukasiewicz t-norm with 𝑎 →% 𝑏 = min 1,1 − 𝑎 + 𝑏
𝛼 = 𝑋! → 𝑋" = min 1,1 − 𝑝! + 𝑝"

Our goal: To find models that make the statement 𝛼 true.
Or equivalently: to find models that make the –ve relaxation as low as possible

𝐿 𝛼, 𝑝 = −min 1,1 − 𝑝! + 𝑝" = max −1, 𝑝! − 𝑝" − 1

Since constants don’t matter, we can write the loss as 𝐿 𝛼, 𝑝 = max 0, 𝑝! − 𝑝"

114

Compare to the product t-
norm relaxation
max 0, log 𝑝! − log 𝑝"

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

115

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations?

116

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

117

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

For example, consider the implication 𝑋! → 𝑋", which is logically equivalent to ¬𝑋!∨ 𝑋". Do these two
have the same losses with the product t-norm?

118

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

For example, consider the implication 𝑋! → 𝑋", which is logically equivalent to ¬𝑋!∨ 𝑋". Do these two
have the same losses with the product t-norm?

119

𝑋! → 𝑋":

Loss = max(0, log 𝑝! − log 𝑝")	

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

For example, consider the implication 𝑋! → 𝑋", which is logically equivalent to ¬𝑋!∨ 𝑋". Do these two
have the same losses with the product t-norm?

120

𝑋! → 𝑋":

Loss = max(0, log 𝑝! − log 𝑝")	

¬𝑋! ∨ 𝑋":

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

For example, consider the implication 𝑋! → 𝑋", which is logically equivalent to ¬𝑋!∨ 𝑋". Do these two
have the same losses with the product t-norm?

121

𝑋! → 𝑋":

Loss = max(0, log 𝑝! − log 𝑝")	

¬𝑋! ∨ 𝑋":

Loss = − log 1 − 𝑝! + 𝑝!𝑝"

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

For example, consider the implication 𝑋! → 𝑋", which is logically equivalent to ¬𝑋!∨ 𝑋". Do these two
have the same losses with the product t-norm?

122

𝑋! → 𝑋":

Loss = max(0, log 𝑝! − log 𝑝")	

¬𝑋! ∨ 𝑋":

Loss = − log 1 − 𝑝! + 𝑝!𝑝"

Clearly these are different functions: T-norm losses are syntactic relaxations

T-norms of logically equivalent expressions

Semantic loss had the same loss value irrespective of how you wrote your Boolean function

What about t-norm relaxations? Not necessarily

For example, consider the implication 𝑋! → 𝑋", which is logically equivalent to ¬𝑋!∨ 𝑋". Do these two
have the same losses with the product t-norm?

123

𝑋! → 𝑋":

Loss = max(0, log 𝑝! − log 𝑝")	

¬𝑋! ∨ 𝑋":

Loss = − log 1 − 𝑝! + 𝑝!𝑝"

Clearly these are different functions: T-norm losses are syntactic relaxations

The same Boolean function may have different (but often similarly behaving) loss
functions depending on how the Boolean function is written

This lecture

• Quick refresher of propositional logic
• Multi-valued logics
• T-norms and their associated functions
• Logic to losses via t-norms
• Examples
– Example 1: Conjunction
– Example 2: Implication

• Syntax versus semantics
– Example 3: The exactly one constraint

124

A simple semi-supervised learning example

Suppose we have:
• A small number of labeled examples for a task with 𝑘 labels
• A large collection of unlabeled examples

What information can the unlabeled examples provide to a model?
An unlabeled example must also have one and exactly one of the 𝑘 labels
Can this information help train a model?

125

The exactly-one constraint

Suppose we have three possible decisions produced by one or more neural networks: 𝑋!, 𝑋", 𝑋$

We want to enforce the following constraints about these decisions:
– One of these three decisions must be true

𝑋! ∨ 𝑋" ∨ 𝑋$
– No two of the three decisions can simultaneously be true

¬𝑋! ∨ ¬𝑋"
¬𝑋" ∨ ¬𝑋$
¬𝑋$ ∨ ¬𝑋!

Together, these constraints require that exactly one of the decisions should be true

How can we incorporate this knowledge into our loss?

126

We have seen this before

The compiled exactly-one constraint

The constraint
𝑋! ∨ 𝑋" ∨ 𝑋$ ∧ ¬𝑋! ∨ ¬𝑋" ∧ ¬𝑋" ∨ ¬𝑋$ ∧ ¬𝑋$ ∨ ¬𝑋!

Let’s derive the loss

127

The exactly-one constraint written differently

The constraint can be equivalently written as
𝑋! ∧ ¬𝑋" ∧ ¬𝑋$ ∨ ¬𝑋! ∧ 𝑋" ∧ ¬𝑋$ ∨ ¬𝑋! ∧ ¬𝑋" ∧ 𝑋$

Let’s derive the loss

128

Syntactic choices may matter

The two versions of the losses we derived are not identical

Which one do we pick?

Here, understanding the optimizer is helpful. Generally, it seems be better
to pick a version that produces a loss with that is a big sum of logs rather
than the log of sums

129

Summary: T-norm losses

T-norms
– Systematic extension of propositional logic to use infinite degrees of truth
– A t-norm is a generalization of a conjunction
– T-conorms and residuum generalize the disjunction and the implication

Key technical component
– Treat model predictions as degrees of truth
– Compile a Boolean formula using a chosen t-norm
– Minimize the relaxation (or its logarithm) to find a model that is consistent with the logic

Pros and cons

– No computational issues such as model counting
– But syntactic variations in how we write the constraints may produce different loss expressions

130

