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Can we train the network to incorporate feedback from & via the discrete step?

Importantly: In this case, we have no trainable parameters after the discrete step
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problems
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Recall: Binary and Multiclass SVM

• Binary SVM
– Maximize margin

– Equivalently, 
Minimize norm of weights such that the closest points to the hyperplane 
have a score at least 1

• Multiclass SVM
– Each label has a different weight vector (like one-vs-all)

– Maximize multiclass margin

– Equivalently,
Minimize total norm of the weights such that the true label is scored at 
least 1 more than the second best one
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Suppose we have some definition of a structure (a factor graph)
 And scoring functions for each factor (i.e. “part”) 𝑝 as 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲𝑝)

Max margin learning: First attempt
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Max margin learning: First attempt

Suppose we have some definition of a structure (a factor graph)
 And scoring functions for each factor (i.e. “part”) 𝑝 as 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲𝑝)

 We also have a data set 𝐷 = {(𝐱𝑖, 𝐲𝑖)}

What we want from training (following the multiclass idea)

For each training example (𝐱𝑖, 𝐲𝑖) :

– The annotated structure 𝐲𝑖  gets the highest score among all structures

– Or to be safe, 𝐲𝑖 gets a score that is at least one more than all other 
structures

∀𝐲 ≠ 𝐲𝑖, 𝐰𝑇Φ 𝐱𝑖, 𝐲𝑖 ≥ 𝐰𝑇Φ 𝐱𝑖, 𝐲 + 1 
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are scored one less than gold!
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Max margin learning: Second attempt

Intuition
• It is okay for a structure that is close (in Hamming sense) to the true one 

to get a score that is close to the true structure
• Structures that are very different from the true structure should get much 

lower scores
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Defined to be zero if 𝐲 =  𝐲𝑖

Problem?



Input with gold 
structure

Another 
structure, 
could be 𝐲𝑖 

Max margin learning: Second attempt

34

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ(𝐲, 𝐲𝑖) ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲

Maximize margin, e.g. by 
minimizing norm of w

Score for gold Score for other

Hamming distance between structures. 
Defined to be zero if 𝐲 =  𝐲𝑖

Problem?

What if these constraints are not satisfied for any parameters for a given dataset?



Input with gold 
structure

Another 
structure, 
could be 𝐲𝑖 

Max margin learning: Third attempt

35

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ(𝐲, 𝐲𝑖) ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲

Maximize margin, e.g. by 
minimizing norm of w

Score for gold Score for other

Hamming distance between structures. 
Defined to be zero if 𝐲 =  𝐲𝑖

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲



Input with gold 
structure

Another 
structure, 
could be 𝐲𝑖 

Max margin learning: Third attempt

36

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ(𝐲, 𝐲𝑖) ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲

Maximize margin, e.g. by 
minimizing norm of w

Score for gold Score for other

Hamming distance between structures. 
Defined to be zero if 𝐲 =  𝐲𝑖

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲

Slack variable for each 
example, must be positive



Input with gold 
structure

Another 
structure, 
could be 𝐲𝑖 

Max margin learning: Third attempt

37

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ(𝐲, 𝐲𝑖) ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲

Maximize margin, e.g. by 
minimizing norm of w

Score for gold Score for other

Hamming distance between structures. 
Defined to be zero if 𝐲 =  𝐲𝑖

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲

Slack variable for each 
example, must be positive

Also minimize 
total slack



Max margin learning: Third attempt

38

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

For every labeled example, and every competing structure

39

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

Score for gold

Score for other

Hamming 
distance

For every labeled example, and every competing structure,
the score for the ground truth should be greater than the score for 
the competing structure by the Hamming distance between them

40

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

Score for gold

Score for other

Hamming 
distance

Slack variable for each 
example

Slack variables allow some examples to be misclassified. 

41

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

Score for gold

Slack variable for each 
example

All slacks must be positive

Slack variables allow some examples to be misclassified. 

42

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Score for other

Hamming 
distance



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

Score for gold

Improve generalization & minimize slack C: the tradeoff parameter

Hamming 
distance

Slack variable for each 
example

Slack variables allow some examples to be misclassified. 

Minimizing the slack forces this to happen as few times as possible

43

All slacks must be positive

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Score for other



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

Score for gold

Improve generalization & minimize slack C: the tradeoff parameter

Hamming 
distance

Slack variable for each 
example

Slack variables allow some examples to be misclassified. 

Minimizing the slack forces this to happen as few times as possible

44

All slacks must be positive

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Score for other



Max margin learning: Third attempt

Another 
structure

Input with gold 
structure

Score for gold

Improve generalization & minimize slack C: the tradeoff parameter

Hamming 
distance

Slack variable for each 
example

Slack variables allow some examples to be misclassified. 

Minimizing the slack forces this to happen as few times as possible

45

All slacks must be positive

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Score for other

Questions?



Max margin learning (a.k.a structural SVM)

46

Another 
structure

Input with gold 
structure

Score for gold

Slack variable for each 
example

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Improve generalization & minimize slack C: the tradeoff parameter

Hamming 
distance

All slacks must be positive

Score for other



Max margin learning (a.k.a structural SVM)
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Another 
structure

Input with gold 
structure

Score for gold

Slack variable for each 
example

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Improve generalization & minimize slack C: the tradeoff parameter

Hamming 
distance

All slacks must be positive

Score for other

Equivalent formulation

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖



Max margin learning (a.k.a structural SVM)
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Another 
structure

Input with gold 
structure

Score for gold

Slack variable for each 
example

min
𝑤,𝜉

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶∑𝜉𝑖

s. t.  𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲𝑖 ≥ 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝜉𝑖  ∀ 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷, ∀𝐲
∀𝑖, 𝜉𝑖 ≥ 0

Improve generalization & minimize slack C: the tradeoff parameter

Hamming 
distance

All slacks must be positive

Score for other

Equivalent formulation

min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Questions?



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Score of the ground truth



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Score of the ground truthScore of the structure 𝐲



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Score of the ground truthScore of the structure 𝐲

The Hamming distance 
between the two sets 
of decisions



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

The additional score 
assigned to the structure 𝐲 
over the ground truth



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Gives the other structure 
additional points in this 
optimization if it is really 
different from the ground 
truth



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Find the structure that has the highest augmented 
score. This is a bad structure whose score needs to 
be minimized



Max margin learning (a.k.a structural SVM)
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min
𝑤

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤 + 𝐶 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒 𝐱𝑖, 𝐲𝑖

Questions?

Find the structure that has the highest augmented 
score. This is a bad structure whose score needs to 
be minimized



Comments

• Other slightly different formulations exist
– Generally same principle

• Multiclass is a special case of structure
– Structural SVM strictly generalizes multiclass SVM

• Can be seen as minimizing structured version of hinge loss
– Remember empirical risk minimization?

• Learning as optimization
– We have framed the optimization problem

• That is, we don’t have a learning algorithm yet

57

Exercise: Work it out



This lecture

• Structural Support Vector Machine

– How it naturally extends multiclass SVM

• Empirical Risk Minimization

– Or: how structural SVM and CRF are solving very similar 
problems

• Training with structured outputs

58



Broader picture: Learning as loss minimization

• Collect some annotated data. More is generally better

• Pick a hypothesis class (also called model)
– Decide how the score decomposes over the parts of the output

• Choose a loss function
– Decide on how to penalize incorrect decisions

• Learning = minimize empirical risk + regularizer

– Typically an optimization procedure needed here

59

This must look familiar. We have seen this before for binary classification!



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖
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Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Where 𝑃 is defined as

𝑃 𝐲i 𝐱𝑖, 𝐰 =
exp 𝑠𝑐𝑜𝑟𝑒𝐰(𝐱𝑖, 𝐲𝑖

𝑍(𝐱𝑖, 𝐰)



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Regularizer

Where 𝑃 is defined as

𝑃 𝐲i 𝐱𝑖, 𝐰 =
exp 𝑠𝑐𝑜𝑟𝑒𝐰(𝐱𝑖, 𝐲𝑖

𝑍(𝐱𝑖, 𝐰)



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Regularizer How badly does w do on the training data

Where 𝑃 is defined as

𝑃 𝐲i 𝐱𝑖, 𝐰 =
exp 𝑠𝑐𝑜𝑟𝑒𝐰(𝐱𝑖, 𝐲𝑖

𝑍(𝐱𝑖, 𝐰)



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Regularizer How badly does w do on the training data

Structured hinge loss

Where 𝑃 is defined as

𝑃 𝐲i 𝐱𝑖, 𝐰 =
exp 𝑠𝑐𝑜𝑟𝑒𝐰(𝐱𝑖, 𝐲𝑖

𝑍(𝐱𝑖, 𝐰)



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Regularizer How badly does w do on the training data

Log loss

Where 𝑃 is defined as

𝑃 𝐲i 𝐱𝑖, 𝐰 =
exp 𝑠𝑐𝑜𝑟𝑒𝐰(𝐱𝑖, 𝐲𝑖

𝑍(𝐱𝑖, 𝐰)



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰

• Structured Perceptron

min
𝐰



𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖  
67



Structured classifiers: Different learning objectives

• Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

• Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰

• Structured Perceptron

min
𝐰



𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖  
68

How badly does 
w do on the 
training data

Structured Perceptron loss



This lecture

• Structural Support Vector Machine

– How it naturally extends multiclass SVM

• Empirical Risk Minimization

– Or: how structural SVM and CRF are solving very similar 
problems

• Training with structured outputs
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How do we learn in these settings?

Short answer: gradient based optimization

But how do we compute gradients when there is 
inference in the mix?
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An example

71

𝑦1 𝑦2

𝐱

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.



An example

72

𝑦1 𝑦2

𝐱

𝑛1 

The network 𝑛1 assigns 
scores for 𝑦1 given 𝐱.

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

The network 𝑛1 assigns 
scores for 𝑦1 given 𝐱.

The network 𝑛2 assigns 
scores for 𝑦2 given 𝐱.

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.



An example
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𝑦1 𝑦2

𝐱

The network 𝑛12 assigns scores for 𝑦1and 𝑦2 coexisting.

𝑛1 𝑛2 

𝑛12 

The network 𝑛1 assigns 
scores for 𝑦1 given 𝐱.

The network 𝑛2 assigns 
scores for 𝑦2 given 𝐱.

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.



An example
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𝑦1 𝑦2

𝐱

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

The network 𝑛12 assigns scores for 𝑦1and 𝑦2 coexisting.

𝑛1 𝑛2 

𝑛12 

Each network may have its own parameters

The network 𝑛1 assigns 
scores for 𝑦1 given 𝐱.

The network 𝑛2 assigns 
scores for 𝑦2 given 𝐱.



An example

76

𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Each network may have its own parameters

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

The network 𝑛12 assigns scores for 𝑦1and 𝑦2 coexisting.

The network 𝑛1 assigns 
scores for 𝑦1 given 𝐱.

The network 𝑛2 assigns 
scores for 𝑦2 given 𝐱.



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

These are unnormalized 
probabilities.

Clearly the network 𝑛1 
prefers the label B for 𝑦2



An example

80

𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

These are unnormalized 
probabilities.

Clearly the network 𝑛2 
prefers the label B for 𝑦2



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

A B C

A −100 0 0

B 0 −100 0

C 0 0 −100

𝑛12(y1, 𝑦2)



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

A B C

A −100 0 0

B 0 −100 0

C 0 0 −100

𝑛12(y1, 𝑦2) The network 𝑛12 
strongly disprefers the 
two labels from being 
the same



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

A B C

A −100 0 0

B 0 −100 0

C 0 0 −100

𝑛12(y1, 𝑦2)

𝑦1 𝑦2 𝑠𝑐𝑜𝑟𝑒𝐰

A A −114

A B 0

A C −21

B A 37

B B −49

B C 30

C A −1

C B 13

C C −108



An example

85

𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

A B C

A −100 0 0

B 0 −100 0

C 0 0 −100

𝑛12(y1, 𝑦2)

𝑦1 𝑦2 𝑠𝑐𝑜𝑟𝑒𝐰

A A −114

A B 0

A C −21

B A 37

B B −49

B C 30

C A −1

C B 13

C C −108

The highest scoring 
consensus decision



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

A B C

A −100 0 0

B 0 −100 0

C 0 0 −100

𝑛12(y1, 𝑦2)

𝑦1 𝑦2 𝑠𝑐𝑜𝑟𝑒𝐰

A A −114

A B 0

A C −21

B A 37

B B −49

B C 30

C A −1

C B 13

C C −108

Suppose this is 
the true label



An example
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𝑦1 𝑦2

𝐱

𝑛1 𝑛2 

𝑛12 

Define 𝑠𝑐𝑜𝑟𝑒𝑤 𝑥, 𝑦1, 𝑦2 = 𝑛1 𝑥, 𝑦1 + 𝑛2 𝑥, 𝑦2 + 𝑛12(𝑦1, 𝑦2) 

We have an input 𝑥 and need to predict two labels 𝑦1 and 𝑦2. 
Suppose each label can be one of {A, B, C}.

𝑦1 𝑛1(𝑥, 𝑦1) 

A −10

B 41

C 3

y2 𝑛2(𝑥, 𝑦2) 

A −4

B 10

C −11

A B C

A −100 0 0

B 0 −100 0

C 0 0 −100

𝑛12(y1, 𝑦2)

𝑦1 𝑦2 𝑠𝑐𝑜𝑟𝑒𝐰

A A −114

A B 0

A C −21

B A 37

B B −49

B C 30

C A −1

C B 13

C C −108

Suppose this is 
the true label

The goal of learning
To update the underlying scoring functions so 
that the score of the true assignment increases 
and the score of the prediction goes down



How do we learn in these settings?

Short answer: gradient based optimization

But how do we compute gradients when there is 
inference in the mix?

Consider, e.g. the structured perceptron objective:

min
𝐰



𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

88



How do we learn in these settings?

Short answer: gradient based optimization

But how do we compute gradients when there is 
inference in the mix?

Consider, e.g. the structured perceptron objective:

min
𝐰



𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

89

These are both the 
same neural network, 
with different inputs



How do we learn in these settings?

Short answer: gradient based optimization

But how do we compute gradients when there is 
inference in the mix?

Consider, e.g. the structured perceptron objective:

min
𝐰



𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

90

The true labeled structure (a 
collection of decisions), whose 
score we want to maximize



How do we learn in these settings?

Short answer: gradient based optimization

But how do we compute gradients when there is 
inference in the mix?

Consider, e.g. the structured perceptron objective:

min
𝐰



𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖
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A competing label 
assignment, whose score 
we want to minimize if it is 
not the same as 𝐲𝑖



How do we learn in these settings?

Short answer: gradient based optimization
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A competing label 
assignment, whose score 
we want to minimize if it is 
not the same as 𝐲𝑖

If the highest scoring 
assignment is not the same 
as the ground truth, the 
value of the loss will be 
non-zero



Structured Perceptron algorithm

Given a training set 𝐷 = { 𝑥𝑖 , 𝑦𝑖 }

Initialize the model parameters 𝐰

1. For epoch = 1 … T:

1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖, 𝐲

2. If 𝐲′ ≠ 𝐲𝑖

  Update 𝐰 ← 𝐰 − 𝛾𝑡 ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦′ − ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦

2. Return w
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1. Compute the gradient of the structured perceptron loss 

2. Take a gradient step
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2. Return w
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1. Compute the gradient of the structured perceptron loss 

2. Take a gradient step

Use any optimizer and all the 
standard optimization tricks here
• Initialization strategies
• Mini-batches instead of single 

examples
• Your favorite optimizer (e.g. 

Adam), learning rates, choices 
of the number of epochs, etc, 
dropout



Structured Perceptron algorithm

Given a training set 𝐷 = { 𝑥𝑖 , 𝑦𝑖 }

Initialize the model parameters 𝐰

1. For epoch = 1 … T:

1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖, 𝐲

2. If 𝐲′ ≠ 𝐲𝑖
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2. Return w
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1. Compute the gradient of the structured perceptron loss 

2. Take a gradient step Let us focus on the one step that is 
different

How do we compute the loss of the 
objective?



The structured perceptron loss

𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖
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This step searches over all possible 
discrete assignments to the output 
labels. How do we compute the loss?



The structured perceptron loss

𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖
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This step searches over all possible 
discrete assignments to the output 
labels. How do we compute the loss?

Answer: Subgradients



The structured perceptron loss

𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖
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This step searches over all possible 
discrete assignments to the output 
labels. How do we compute the loss?

Answer: Subgradients

Subgradient of a max …: first solve the maximization and 
then compute gradient of the argmax 



Structured Perceptron algorithm

Given a training set 𝐷 = { 𝑥𝑖 , 𝑦𝑖 }

Initialize the model parameters 𝐰

1. For epoch = 1 … T:

1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖, 𝐲

2. If 𝐲′ ≠ 𝐲𝑖

  Update 𝐰 ← 𝐰 − 𝛾𝑡 ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦′ − ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦𝑖

2. Return w
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Inference within the training loop



Structured Perceptron algorithm

Given a training set 𝐷 = { 𝑥𝑖 , 𝑦𝑖 }

Initialize the model parameters 𝐰
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1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲
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2. Return w
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Inference within the training loop
We can use any of the inference 
strategies here. E.g. beam search



Structured Perceptron algorithm

Given a training set 𝐷 = { 𝑥𝑖 , 𝑦𝑖 }

Initialize the model parameters 𝐰

1. For epoch = 1 … T:

1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖, 𝐲

2. If 𝐲′ ≠ 𝐲𝑖

  Update 𝐰 ← 𝐰 − 𝛾𝑡 ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦′ − ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦𝑖

2. Return w
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Update only on an error. 
Structured Perceptron is an mistake-driven algorithm.
If there is a mistake, promote y and demote y’



Structured Perceptron algorithm

Given a training set 𝐷 = { 𝑥𝑖 , 𝑦𝑖 }

Initialize the model parameters 𝐰

1. For epoch = 1 … T:

1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖, 𝐲

2. If 𝐲′ ≠ 𝐲𝑖

  Update 𝐰 ← 𝐰 − 𝛾𝑡 ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦′ − ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦𝑖

2. Return w
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Note that the gradients will be distributed over 
the underlying factors that make up 𝑠𝑐𝑜𝑟𝑒𝐰



Similar strategies for the structural SVM and CRF 
objectives

Structural SVM

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖 − 𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲𝑖

Conditional Random Field (via the maximum a posteriori criterion)

min
𝐰

1

2
𝐰𝑇𝐰 + C 

𝑖

− log 𝑃 𝐲𝑖 ∣ 𝐱𝑖 , 𝐰
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Example: The max margin objective

Given a training set 𝐷 = { 𝑥𝑖, 𝑦𝑖 }

Initialize the model parameters 𝐰

1. For epoch = 1 … T:
1. Shuffle data

2. For each training example 𝐱𝑖 , 𝐲𝑖 ∈ 𝐷:

1. Let 𝐲′ =  max
𝐲

𝑠𝑐𝑜𝑟𝑒𝐰 𝐱𝑖 , 𝐲 + Δ 𝐲, 𝐲𝑖

2. If 𝐲′ ≠ 𝐲𝑖: 
Update 𝐰 ← 1 − 𝛾𝑡 𝐰

3. Else:

Update 𝐰 ← 1 − 𝛾𝑡 𝐰 − 𝐶𝛾𝑡 ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦′ − ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦𝑖

2. Return w
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Example: The max margin objective

Given a training set 𝐷 = { 𝑥𝑖, 𝑦𝑖 }

Initialize the model parameters 𝐰
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1. Shuffle data
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Update 𝐰 ← 1 − 𝛾𝑡 𝐰
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Update 𝐰 ← 1 − 𝛾𝑡 𝐰 − 𝐶𝛾𝑡 ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦′ − ∇𝐰𝑠𝑐𝑜𝑟𝑒𝐰 𝑥𝑖, 𝑦𝑖

2. Return w
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“Loss-augmented inference” 
within the training loop



Example: The max margin objective

Given a training set 𝐷 = { 𝑥𝑖, 𝑦𝑖 }
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2. Return w
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Example: The max margin objective

Given a training set 𝐷 = { 𝑥𝑖, 𝑦𝑖 }
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2. Return w
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If there is no error in the inference, 
then make the weights smaller



Example: The max margin objective

Given a training set 𝐷 = { 𝑥𝑖, 𝑦𝑖 }
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1. Let 𝐲′ =  max
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2. Return w
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If there is an error, shrink the 
weights, and promote the ground 
truth and demote the prediction



Summary

• Different structured training objectives are really 
different loss functions

• The structured versions of hinge, log and Perceptron 
losses all involve inference 

– Hinge, Perceptron: Solve a maximization problem

– Log: Solve an expectation problem

• Learning as stochastic optimization, even for structures
– But, computing the loss (and the gradient) can be expensive
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