
Learning with symbols
within neural networks:

Gumbel-Softmax
Neuro-symbolic modeling

Neural networks containing discrete elements

Neural
network

Discrete
step

Neural
networkInput Output/loss

Let’s see some examples

This lecture

• Motivating examples

• The straight-through estimator

• Gumbel-Softmax

• REINFORCE

(others if time permits)

Not all these approaches
are always applicable

The problem: Stochastic nodes in neural
networks
Let us consider a simple neural network consisting
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to produce
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized
distribution associated with these scores

The final output is then 𝑔"(𝑧)

The problem: Stochastic nodes in neural
networks
Let us consider a simple neural network consisting
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to produce
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized
distribution associated with these scores

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

The problem: Stochastic nodes in neural
networks
Let us consider a simple neural network consisting
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to produce
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized
distribution associated with these scores

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Sample

The problem: Stochastic nodes in neural
networks
Let us consider a simple neural network consisting
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to produce
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized
distribution associated with these scores

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Sample

𝑝"

The problem: Stochastic nodes in neural
networks
Let us consider a simple neural network consisting
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to produce
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized
distribution associated with these scores

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Sample

𝑝"
By sampling 𝑧, we no longer
have a differentiable link
between the final output
and the parameters 𝜃

Example: Text classification and rationales

Example from Bastings, Jasmijn, Wilker Aziz, and Ivan Titov. "Interpretable Neural Predictions with Differentiable Binary
Variables." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2963-2977. 2019.

An alternative approach:

1. Identify the rationale (the highlighted
words)

𝑍# ∣ 𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑔# 𝑥, 𝜙

For each token, this represents
whether the token is relevant or not

Each 𝑍# can be seen as a Boolean
proposition

Example: Text classification and rationales

Example from Bastings, Jasmijn, Wilker Aziz, and Ivan Titov. "Interpretable Neural Predictions with Differentiable Binary
Variables." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2963-2977. 2019.

An alternative approach:

1. Identify the rationale (the highlighted
words)

𝑍# ∣ 𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑔# 𝑥, 𝜙

2. Use only the highlighted words as input to
the classifier
𝑌 ∣ 𝑥 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑓 𝑥 ⊙ 𝑍, 𝜃

The Gumbel-Softmax trick

A strategy for training with discrete variables

Introduced concurrently by two papers in ICLR 2017:
• Jang, Eric, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”
• Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables”

Combines two ideas:
1. The reparameterization trick
2. The Gumbel distribution

The Gumbel-Softmax trick

A strategy for training with discrete variables

Introduced concurrently by two papers in ICLR 2017:
• Jang, Eric, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”
• Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables”

Combines two ideas:
1. The reparameterization trick
2. The Gumbel distribution

The reparameterization trick: Example

Suppose we have a sample from a Gaussian with mean 𝜇 and standard
deviation 𝜎

𝑧 ∼ Normal(𝜇, 𝜎)
And suppose we have some loss 𝐿(𝑧) defined over the sample

Can we compute the gradient of 𝐿 with respect to the parameters of the
Gaussian?

The reparameterization trick: Example

Suppose we have a sample from a Gaussian with mean 𝜇 and standard
deviation 𝜎

𝑧 ∼ Normal(𝜇, 𝜎)
And suppose we have some loss 𝐿(𝑧) defined over the sample

Can we compute the gradient of 𝐿 with respect to the parameters of the
Gaussian?

No. When we sample z, we have broken the dependency between 𝐿 and 𝜇, 𝜎

Let’s rewrite the Gaussian sample

Instead of writing 𝑧 ∼ Normal(𝜇, 𝜎), we can write

𝜖 ∼ Normal 0, 1
𝑧 = 𝜇 + 𝜎𝜖

Now the desired function 𝐿(𝑧) has a direct dependency on 𝜇 and 𝜎

We can take derivatives of 𝐿 with respect to them

As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)

As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)

No backward path from the loss to the
parameters because of the stochastic node

Cannot compute gradient L

As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)

Rewrite the original function as

No backward path from the loss to the
parameters because of the stochastic node

Cannot compute gradient L

𝐿

Sample Normal	(0, 1)

𝜇

𝜎

×

+ 𝑧

𝜖

As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)

Stochastic node does not block any
gradient computation with respect to 𝜇
and 𝜎

No backward path from the loss to the
parameters because of the stochastic node

Cannot compute gradient L

𝐿

Sample Normal	(0, 1)

𝜇

𝜎

×

+ 𝑧

𝜖

Rewrite the original function as

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters. ∇"𝐿 is easy, so let us focus on ∇!𝐿

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

∇!𝐿 is easy, so let us focus on ∇"𝐿

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙 and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of
parameters

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙 such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters

The Gumbel-Softmax trick

A strategy for training with discrete variables

Introduced concurrently by two papers in ICLR 2017:
• Jang, Eric, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”
• Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables”

Combines two ideas:
1. The reparameterization trick
2. The Gumbel distribution

Gumbel distribution

Models the distribution of the max of a set of samples from an
exponential distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Gumbel distribution

Models the distribution of the max of a set of samples from another
distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Location

Scale

Gumbel distribution

Models the distribution of the max of a set of samples from another
distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Location

Scale

For the “standard” Gumbel distribution, we have 𝜇 = 0, 𝜎 = 1

Gumbel distribution

Models the distribution of the max of a set of samples from another
distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Sampling from this distribution is easy
𝑔 ∼ − log − log Uniform 0, 1

Models the distribution of the max of a set of samples from another
distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Sampling from this distribution is easy
𝑔 ∼ − log − log Uniform 0, 1

Gumbel distribution

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 samples from the standard Gumbel distribution 𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 samples from the standard Gumbel distribution 𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 independent samples from the standard Gumbel distribution
𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 independent samples from the standard Gumbel distribution
𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 independent samples from the standard Gumbel distribution
𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!
Exercise: How would
you prove this?

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 independent samples from the standard Gumbel distribution
𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

These scores could be assigned
to more complicated structures
as well. The same procedure
works

Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 independent samples from the standard Gumbel distribution
𝑔!, 𝑔", ⋯ , 𝑔#

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

Reduces the problem of estimating
a sample from a distribution to a
maximization problem

These scores could be assigned
to more complicated structures
as well. The same procedure
works

The Gumbel-Softmax trick

A strategy for training with discrete variables

Introduced concurrently by two papers in ICLR 2017:
• Jang, Eric, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”
• Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables”

Combines two ideas:
1. The reparameterization trick
2. The Gumbel distribution

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Scores for
each category

Suppose we have a component of a neural network that
produces scores for 𝑘 categories

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

𝑓!

𝑥

Scores for
each category

Suppose we have a component of a neural network that
produces scores for 𝑘 categories

This corresponds to a categorical distribution via softmax

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for
each category

Suppose we have a component of a neural network that
produces scores for 𝑘 categories

This corresponds to a categorical distribution via softmax

And we can sample from the distribution to produce a k-
dimensional one-hot vector

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for
each category

Suppose we have a component of a neural network that
produces scores for 𝑘 categories

This corresponds to a categorical distribution via softmax

And we can sample from the distribution

But backprop is no longer viable

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for
each category

Reparameterize as

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Scores for
each category

Reparameterize as

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥 Standard Gumbel

Scores for
each category

Reparameterize as

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&
Scores for
each category

Reparameterize as

Construct as many
Gumbel samples as the
number of categories

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for
each category

Reparameterize as
Add to the original scores

One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as

Argmax is a sample
from the softmax-
normalized scores

One hot vector One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as
Importantly, the
stochastic component is
not in the path of the
backprop

One hot vector One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as
Importantly, the
stochastic component is
not in the path of the
backprop

Have we solved
all our problems?

One hot vector One hot vector

Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as

What about the argmax operation?
How do we take its derivative?

One hot vector One hot vector

The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax
with a softmax

The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax
with a softmax

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

𝑠oftmax
𝑠# + 𝑔#
𝜆

Dense vector

The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax
with a softmax

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

Think of this as a soft
approximation of the
one-hot vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax
with a softmax

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

The resulting network is
now fully differentiable
w.r.t the parameters

The 𝜆 is the softmax temperature
High 𝜆 → uniform distribution
Low 𝜆 → Closer to argmax

What does the temperature do? An example

When temperature = 1,
the samples represent
the true distribution

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

What does the temperature do? An example

When temperature =
0.5, the empirical
distribution becomes
more peaky

More probable
categories are over-
represented

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

What does the temperature do? An example

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

When temperature =
0.1, the peakiness is
more visible

Only a few categories
show up in the samples

What does the temperature do? An example

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

When temperature =
0.001, only the most
probable category (i.e.
the argmax) is sampled

What does the temperature do? An example

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

When the temperature
is increased to 2, the
empirical distribution
becomes more “flat”
than the actual softmax

More probable
categories are
undersampled and less
probable ones are
oversampled

What does the temperature do? An example

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

When the temperature
is increased to 10, the
“flatness” is more visible

What does the temperature do? An example

An experiment:

1. Randomly create a set of
scores over ten
categories

2. Sample 10k times for
different values of
temperature

3. Compute empirical
distribution of samples
and compare to softmax
of the scores

When the temperature
is increased to 100, the
empirical distribution is
nearly uniform

At high temperatures,
the underlying scores
are ignored

Using the Gumbel-softmax trick: Approach 1

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for
each category

One hot vector

Training time: Replace with the
relaxed reparameterized version

Test time: use the argmax (or the
actual sampling)

Using the Gumbel-softmax trick: Approach 2

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for
each category

One hot vector
Training time (forward pass): Use
the argmax version

Training time (backward pass):
Use the relaxed reparameterized
version

Test time: use the argmax (or the
actual sampling)

Using the Gumbel-softmax trick: Approach 2

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for
each category

One hot vector
Training time (forward pass): Use
the argmax version

Training time (backward pass):
Use the relaxed reparameterized
version

Test time: use the argmax (or the
actual sampling)

Straight-through Gumbel-softmax

Gumbel-softmax: Takeaways

Helps train models that have a categorical sampling node in them
• Important: Does not have to be multiclass sampling, more complicated structures

possible as well
• Any discrete distribution can be approximated with the Gumbel-max

An easy idea to incorporate in your code
• Can combine with the straight through estimator

The approach is sensitive to the choice of the softmax temperature
• The Concrete paper uses 𝜆 = "

&
• Another approach: Anneal the temperature from a high temperature to a low one

while training proceeds

