
Learning with symbols 
within neural networks:

Gumbel-Softmax
Neuro-symbolic modeling



Neural networks containing discrete elements

Neural 
network

Discrete 
step

Neural 
networkInput Output/loss

Let’s see some examples



This lecture

• Motivating examples

• The straight-through estimator

• Gumbel-Softmax

• REINFORCE

(others if time permits)

Not all these approaches 
are always applicable



The problem: Stochastic nodes in neural 
networks
Let us consider a simple neural network consisting 
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥  to produce 
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized 
distribution associated with these scores

The final output is then 𝑔"(𝑧)
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The problem: Stochastic nodes in neural 
networks
Let us consider a simple neural network consisting 
of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥  to produce 
a set of 𝑑 scores

A discrete value 𝑧 is sampled from the normalized 
distribution associated with these scores

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Sample

𝑝"
By sampling 𝑧, we no longer 
have a differentiable link 
between the final output 
and the parameters 𝜃



Example: Text classification and rationales

Example from Bastings, Jasmijn, Wilker Aziz, and Ivan Titov. "Interpretable Neural Predictions with Differentiable Binary 
Variables." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2963-2977. 2019.

An alternative approach: 

1. Identify the rationale (the highlighted 
words) 

𝑍# ∣ 𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑔# 𝑥, 𝜙

For each token, this represents 
whether the token is relevant or not

Each 𝑍#  can be seen as a Boolean 
proposition



Example: Text classification and rationales

Example from Bastings, Jasmijn, Wilker Aziz, and Ivan Titov. "Interpretable Neural Predictions with Differentiable Binary 
Variables." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2963-2977. 2019.

An alternative approach: 

1. Identify the rationale (the highlighted 
words) 

𝑍# ∣ 𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑔# 𝑥, 𝜙

2. Use only the highlighted words as input to 
the classifier
𝑌 ∣ 𝑥 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑓 𝑥 ⊙ 𝑍, 𝜃



The Gumbel-Softmax trick

A strategy for training with discrete variables

Introduced concurrently by two papers in ICLR 2017:
• Jang, Eric, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”
• Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A 

Continuous Relaxation of Discrete Random Variables”

Combines two ideas:
1. The reparameterization trick
2. The Gumbel distribution
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The reparameterization trick: Example

Suppose we have a sample from a Gaussian with mean 𝜇 and standard 
deviation 𝜎

𝑧 ∼ Normal(𝜇, 𝜎)
And suppose we have some loss 𝐿(𝑧) defined over the sample

Can we compute the gradient of 𝐿 with respect to the parameters of the 
Gaussian?



The reparameterization trick: Example

Suppose we have a sample from a Gaussian with mean 𝜇 and standard 
deviation 𝜎

𝑧 ∼ Normal(𝜇, 𝜎)
And suppose we have some loss 𝐿(𝑧) defined over the sample

Can we compute the gradient of 𝐿 with respect to the parameters of the 
Gaussian? 

No. When we sample z, we have broken the dependency between 𝐿 and 𝜇, 𝜎



Let’s rewrite the Gaussian sample

Instead of writing 𝑧 ∼ Normal(𝜇, 𝜎), we can write

𝜖 ∼ Normal 0, 1
𝑧 = 𝜇 + 𝜎𝜖

Now the desired function 𝐿(𝑧) has a direct dependency on 𝜇 and 𝜎

We can take derivatives of 𝐿 with respect to them



As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)



As computation graphs…
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No backward path from the loss to the 
parameters because of the stochastic node

Cannot compute gradient L 



As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)

Rewrite the original function as 

No backward path from the loss to the 
parameters because of the stochastic node

Cannot compute gradient L 

𝐿

Sample Normal	(0, 1)
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×
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As computation graphs…

𝜇 𝜎

𝐿

𝑧

Sample Normal	(𝜇, 𝜎)

Stochastic node does not block any 
gradient computation with respect to 𝜇 
and 𝜎

No backward path from the loss to the 
parameters because of the stochastic node

Cannot compute gradient L 

𝐿

Sample Normal	(0, 1)

𝜇

𝜎

×

+ 𝑧

𝜖

Rewrite the original function as 



The reparameterization trick: More generally

Suppose we have z ∼ 𝑓 𝑥, 𝜙  and 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃

Our goal is to compute the gradient of 𝐿 with respect to both sets of 
parameters. ∇"𝐿 is easy, so let us focus on ∇!𝐿

1. Find a fixed noise distribution 𝑝 and sample noise 𝜖 ∼ 𝑝
2. Define 𝑧 = ℎ 𝑥, 𝜖, 𝜙  such that 𝑧 ends up being a sample from 𝑓 𝑥, 𝜙
3. We have 𝐿 𝑥, 𝜙, 𝜃 = 𝑔 𝑧, 𝜃 = 𝑔 ℎ 𝑥, 𝜖, 𝜙 , 𝜃

𝐿 is now a differentiable function of the parameters
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Gumbel distribution

Models the distribution of the max of a set of samples from an 
exponential distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽
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Gumbel distribution

Models the distribution of the max of a set of samples from another 
distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Location

Scale

For the “standard” Gumbel distribution, we have  𝜇 = 0, 𝜎 = 1



Gumbel distribution

Models the distribution of the max of a set of samples from another 
distribution

The Gumbel distribution is defined by the cdf
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𝑔 ∼ − log − log Uniform 0, 1



Models the distribution of the max of a set of samples from another 
distribution

The Gumbel distribution is defined by the cdf
𝐹 𝑥 = exp −exp −

𝑥 − 𝜇
𝛽

Sampling from this distribution is easy
𝑔 ∼ − log − log Uniform 0, 1

Gumbel distribution



Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 samples from the standard Gumbel distribution  𝑔!, 𝑔", ⋯ , 𝑔# 

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!
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Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories
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Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!
Exercise: How would 
you prove this?



Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories
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The argmax is a sample from the desired distribution!

These scores could be assigned 
to more complicated structures 
as well. The same procedure 
works



Why is the Gumbel distribution interesting?

Suppose we have a set of real valued scores 𝑥!, 𝑥", ⋯ , 𝑥# assigned to 𝑘 discrete categories

We wish to sample from the softmax of these scores, where:

𝑃 𝑖 =
exp 𝑥$
∑% exp 𝑥%

To do so, generate 𝑘 independent samples from the standard Gumbel distribution  
𝑔!, 𝑔", ⋯ , 𝑔# 

Then argmax
$

𝑥$ + 𝑔$ ∼ softmax 𝑥!, 𝑥", ⋯ , 𝑥#

The argmax is a sample from the desired distribution!

Reduces the problem of estimating 
a sample from a distribution to a 
maximization problem

These scores could be assigned 
to more complicated structures 
as well. The same procedure 
works



The Gumbel-Softmax trick

A strategy for training with discrete variables

Introduced concurrently by two papers in ICLR 2017:
• Jang, Eric, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”
• Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A 

Continuous Relaxation of Discrete Random Variables”

Combines two ideas:
1. The reparameterization trick
2. The Gumbel distribution



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Scores for 
each category

Suppose we have a component of a neural network that 
produces scores for 𝑘 categories
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Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for 
each category

Suppose we have a component of a neural network that 
produces scores for 𝑘 categories

This corresponds to a categorical distribution via softmax

And we can sample from the distribution to produce a k-
dimensional one-hot vector

One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for 
each category

Suppose we have a component of a neural network that 
produces scores for 𝑘 categories

This corresponds to a categorical distribution via softmax

And we can sample from the distribution

But backprop is no longer viable

One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for 
each category

Reparameterize as

One hot vector
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Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥 Standard Gumbel

Scores for 
each category

Reparameterize as

One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&
Scores for 
each category

Reparameterize as

Construct as many 
Gumbel samples as the 
number of categories

One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for 
each category

Reparameterize as
Add to the original scores

One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for 
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as

Argmax is a sample 
from the softmax-
normalized scores

One hot vector One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for 
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as
Importantly, the 
stochastic component is 
not in the path of the 
backprop

One hot vector One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for 
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as
Importantly, the 
stochastic component is 
not in the path of the 
backprop

Have we solved 
all our problems?

One hot vector One hot vector



Sampling from a categorical distribution

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Scores for 
each category

argmax
#
𝑠# + 𝑔#

Reparameterize as

What about the argmax operation? 
How do we take its derivative?

One hot vector One hot vector



The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax 
with a softmax



The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax 
with a softmax

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

𝑠oftmax
𝑠# + 𝑔#
𝜆

Dense vector



The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax 
with a softmax

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

Think of this as a soft 
approximation of the 
one-hot vector

𝑠oftmax
𝑠# + 𝑔#
𝜆



The Gumbel-softmax solution

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

argmax
#
𝑠# + 𝑔#

One hot vector

Replace the argmax 
with a softmax

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

The resulting network is 
now fully differentiable 
w.r.t the parameters

The 𝜆 is the softmax temperature
High 𝜆 → uniform distribution
Low 𝜆 → Closer to argmax



What does the temperature do? An example

When temperature = 1, 
the samples represent 
the true distribution

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores



What does the temperature do? An example

When temperature = 
0.5, the empirical 
distribution becomes 
more peaky

More probable 
categories are over-
represented

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores



What does the temperature do? An example

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores

When temperature = 
0.1, the peakiness is 
more visible

Only a few categories 
show up in the samples



What does the temperature do? An example

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores

When temperature = 
0.001, only the most 
probable category (i.e. 
the argmax) is sampled



What does the temperature do? An example

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores

When the temperature 
is increased to 2, the 
empirical distribution 
becomes more “flat” 
than the actual softmax

More probable 
categories are 
undersampled and less 
probable ones are 
oversampled



What does the temperature do? An example

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores

When the temperature 
is increased to 10, the 
“flatness” is more visible



What does the temperature do? An example

An experiment: 

1. Randomly create a set of 
scores over ten 
categories

2. Sample 10k times for 
different values of 
temperature

3. Compute empirical 
distribution of samples 
and compare to softmax 
of the scores

When the temperature 
is increased to 100, the 
empirical distribution is 
nearly uniform

At high temperatures, 
the underlying scores 
are ignored



Using the Gumbel-softmax trick: Approach 1

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for 
each category

One hot vector

Training time: Replace with the 
relaxed reparameterized version

Test time: use the argmax (or the 
actual sampling)



Using the Gumbel-softmax trick: Approach 2

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for 
each category

One hot vector
Training time (forward pass): Use 
the argmax version

Training time (backward pass): 
Use the relaxed reparameterized 
version

Test time: use the argmax (or the 
actual sampling)



Using the Gumbel-softmax trick: Approach 2

𝑠$, 𝑠%, ⋯ , 𝑠&

𝑓!

𝑥

Sample

Standard Gumbel

𝑔$, 𝑔%, ⋯ , 𝑔&

+

Dense vector

𝑠oftmax
𝑠# + 𝑔#
𝜆

𝑠$, 𝑠%, ⋯ , 𝑠&

Softmax

Sample

𝑓!

𝑥

Scores for 
each category

One hot vector
Training time (forward pass): Use 
the argmax version

Training time (backward pass): 
Use the relaxed reparameterized 
version

Test time: use the argmax (or the 
actual sampling)

Straight-through Gumbel-softmax



Gumbel-softmax: Takeaways

Helps train models that have a categorical sampling node in them
• Important: Does not have to be multiclass sampling, more complicated structures 

possible as well
• Any discrete distribution can be approximated with the Gumbel-max

An easy idea to incorporate in your code
• Can combine with the straight through estimator

The approach is sensitive to the choice of the softmax temperature
• The Concrete paper uses 𝜆 = "

&
• Another approach: Anneal the temperature from a high temperature to a low one 

while training proceeds


