
Learning with symbols 
within neural networks

Neuro-symbolic modeling



Neural networks containing discrete elements

Neural 
network

Discrete 
step

Neural 
networkInput Output/loss

Let’s see some examples
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This lecture

• Motivating examples

• The straight-through estimator

• The Gumbel trick

• REINFORCE

(others if time permits)

Not all these approaches 
are always applicable
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Suppose the discrete step is opaque

Neural 
network

Discrete 
step

Neural 
networkInput Output/loss

If we have no idea or control about the inner workings of the discrete 
step, then we will need to use ideas from reinforcement learning
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Reinforcement learning: Some basics
An agent interacts with an environment 
by taking actions 

At any step 𝑡, the agent exists in a state  
𝑠! 

In state 𝑠! at time step 𝑡, the agent uses 
its internal policy 𝜋" to sample an action 
𝑎!~𝜋" 𝑠!

The environment returns a reward 𝑟! 
and takes the agent to the new state 
𝑠!#$ 

Agent
𝜋!(⋅)

Environment
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Agent
𝜋!(⋅)
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𝑠!

𝑎!~	𝜋" 𝑠!
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Reinforcement learning: Some basics
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Reinforcement learning: Some basics
An agent interacts with an environment 
by taking actions 

At any step 𝑡, the agent exists in a state  
𝑠! 

In state 𝑠! at time step 𝑡, the agent uses 
its internal policy 𝜋" to sample an action 
𝑎!~𝜋" 𝑠!

The environment returns a reward 𝑟! 
and takes the agent to the new state 
𝑠!#$ 

Agent
𝜋!(⋅)

Environment

𝑟!

𝑠!#$

Quite an open-ended learning paradigm

𝑎!~	𝜋" 𝑠!
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Reinforcement learning: Some basics
An agent interacts with an environment 
by taking actions 

At any step 𝑡, the agent exists in a state  
𝑠! 

In state 𝑠! at time step 𝑡, the agent uses 
its internal policy 𝜋" to sample an action 
𝑎!~𝜋" 𝑠!

The environment returns a reward 𝑟! 
and takes the agent to the new state 
𝑠!#$ 

What are some examples of agents and environments?
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Reinforcement learning: Some basics
An agent interacts with an environment 
by taking actions 

At any step 𝑡, the agent exists in a state  
𝑠! 

In state 𝑠! at time step 𝑡, the agent uses 
its internal policy 𝜋" to sample an action 
𝑎!~𝜋" 𝑠!
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𝑠!#$ 

Some examples of agents and environments

Agent: converts a natural language command into a 
program
Environment: executes the program and returns the 
output
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simulated players 

13

What are the states, actions and rewards in each case?

Agent
𝜋!(⋅)

Environment

𝑟!

𝑠!#$

𝑎!~	𝜋" 𝑠!



Reinforcement Learning 

The field of reinforcement learning (RL) has studied the problem of learning 
by interacting with an environment for many years now [Williams, 1992; Sutton and 
Barto, 1998] 

Circa 2013: resurgence of interest in RL applied to  
deep learning, game-playing [Mnih et al., 2013]

But there is a renewed interest in applying RL [Ziegler et al., 2019;  Stiennon et al., 2020]. 
Why?

• RL w/ LMs has commonly been viewed as very hard  to get right (still is!)
• RL algorithms that work for large neural models, including language models  (e.g. 

PPO; [Schulman et al., 2017])
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Caveats about this lecture

RL is a rich field with a diverse collection of algorithms and ideas

We will look at one popular approach: REINFORCE

The general setting allows for rewards being harvested over multiple 
steps corresponding to multiple actions. For this lecture, we will assume 
that there is only one action and one step that gets a reward
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Learning to maximize reward

The goal of learning: Discover a policy that allows the agent to accure 
high rewards

Formally: Prefer models which maximize expected reward
max
!
𝔼"~$! 𝑅 𝑠, 𝑎

How do we solve this optimization problem?
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Learning the policy function

We want max
!
𝔼"~$! 𝑅 𝑠, 𝑎

Gradient ascent:
𝜃%&' ← 𝜃% + 𝛼∇!"𝔼(~$! 𝑅 𝑠; 𝑝learning	rate	×	gradient	of	the	objective
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Learning the policy function

We want max
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Learning the policy function

We want max
!
𝔼"~$! 𝑅 𝑠, 𝑎

Gradient ascent:
𝜃%&' ← 𝜃% + 𝛼∇!"𝔼"~$!" 𝑅 𝑠, 𝑎

gradient	of	the	objectivelearning	rate	
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Learning the policy function

We want max
!
𝔼(~$! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃%&' ← 𝜃% + 𝛼∇!"𝔼"~$!" 𝑅 𝑠, 𝑎

But how do we estimate this gradient? 

(Why doesn’t the usual approach for 
derivatives not work?)
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Learning the policy function

We want max
!
𝔼(~$! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃%&' ← 𝜃% + 𝛼∇!"𝔼"~$!" 𝑅 𝑠, 𝑎

But how do we estimate this gradient?

Let us look at a simple version of policy 
gradients

21



Two useful tricks

1. Monte Carlo estimates for approximating expectations
Obtain 𝑛 samples from the distribution of interest and compute the average

𝐸7~9 𝑓 𝑥 ≈
1
𝑛
.
:;$

<

𝑓(𝑥:)

2. The REINFORCE trick [Williams 1992]
𝜕	
𝜕𝑥
𝑓(𝑥) = 𝑓(𝑥)

𝜕
𝜕𝑥
log 𝑓(𝑥)
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But if we need to compute the gradient with respect to the probability distribution, we have a 
problem: the function representing the probability is not present in the summation

∇!!𝔼"~$"! 𝑅 𝑠; 𝑎 ≈ ∇!!
1
𝑛*
%&'

(

𝑅 𝑠; 𝑎
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But if we need to compute the gradient with respect to the probability distribution, we have a 
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No 𝜃) in this expression!
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Let us reformulate the gradient
∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F

%

𝑅(𝑥)𝑃! 𝑥

=F
%

𝑅(𝑥)∇!𝑃! 𝑥

=F
%

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼%~&! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛F
'()

*

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃 

The REINFORCE trick

Rewrite as an expectation

Approximate with samples
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Definition of expectation. Also works with integrals, but 
let’s keep things simple



Let us reformulate the gradient
∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F
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∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F
"

𝑅(𝑠, 𝑎)𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅(𝑠, 𝑎)∇!𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅 𝑠, 𝑎 𝑃! 𝑎 ∣ 𝑠 ∇! log 𝑃!(𝑎 ∣ 𝑠)

= 𝔼"~&! 𝑅 𝑠, 𝑎 ∇! log 𝑃! 𝑎 ∣ 𝑠

≈
1
𝑛F
'()

*

𝑅 𝑠, 𝑎' ∇! log 𝑃! 𝑎' ∣ 𝑠

Let us reformulate the gradient

Rewrite as an expectation

Approximate with samples
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𝑅 does not depend on 𝜃 

The REINFORCE trick

Definition of expectation. Also works with integrals, but 
let’s keep things simple



∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F
"

𝑅(𝑠, 𝑎)𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅(𝑠, 𝑎)∇!𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅 𝑠, 𝑎 𝑃! 𝑎 ∣ 𝑠 ∇! log 𝑃!(𝑎 ∣ 𝑠)

= 𝔼"~&! 𝑅 𝑠, 𝑎 ∇! log 𝑃! 𝑎 ∣ 𝑠

≈
1
𝑛F
'()

*

𝑅 𝑠, 𝑎' ∇! log 𝑃! 𝑎' ∣ 𝑠

Let us reformulate the gradient

Approximate with samples
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𝑅 does not depend on 𝜃 

The REINFORCE trick

Rewrite as an expectation

Definition of expectation. Also works with integrals, but 
let’s keep things simple



Let us reformulate the gradient

𝑅 does not depend on 𝜃 

The REINFORCE trick

Rewrite as an expectation

Approximate with 𝑛	samples
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Definition of expectation. Also works with integrals, but 
let’s keep things simple

∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F
"

𝑅(𝑠, 𝑎)𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅(𝑠, 𝑎)∇!𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅 𝑠, 𝑎 𝑃! 𝑎 ∣ 𝑠 ∇! log 𝑃!(𝑎 ∣ 𝑠)

= 𝔼"~&! 𝑅 𝑠, 𝑎 ∇! log 𝑃! 𝑎 ∣ 𝑠

≈
1
𝑛F
'()

*

𝑅 𝑠, 𝑎' ∇! log 𝑃! 𝑎' ∣ 𝑠



Let us reformulate the gradient

𝑅 does not depend on 𝜃 

The REINFORCE trick

Rewrite as an expectation

Approximate with 𝑛	samples
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Definition of expectation. Also works with integrals, but 
let’s keep things simple

∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F
"

𝑅(𝑠, 𝑎)𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅(𝑠, 𝑎)∇!𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅 𝑠, 𝑎 𝑃! 𝑎 ∣ 𝑠 ∇! log 𝑃!(𝑎 ∣ 𝑠)

= 𝔼"~&! 𝑅 𝑠, 𝑎 ∇! log 𝑃! 𝑎 ∣ 𝑠

≈
1
𝑛F
'()

*

𝑅 𝑠, 𝑎' ∇! log 𝑃! 𝑎' ∣ 𝑠

How do we compute the derivative of the log probability? 



Let us reformulate the gradient

𝑅 does not depend on 𝜃 

The REINFORCE trick

Rewrite as an expectation

Approximate with 𝑛	samples
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Definition of expectation. Also works with integrals, but 
let’s keep things simple

∇!𝔼"~$! 𝑅(𝑠, 𝑎) = ∇!F
"

𝑅(𝑠, 𝑎)𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅(𝑠, 𝑎)∇!𝑃! 𝑎 ∣ 𝑠

=F
"

𝑅 𝑠, 𝑎 𝑃! 𝑎 ∣ 𝑠 ∇! log 𝑃!(𝑎 ∣ 𝑠)

= 𝔼"~&! 𝑅 𝑠, 𝑎 ∇! log 𝑃! 𝑎 ∣ 𝑠

≈
1
𝑛F
'()

*

𝑅 𝑠, 𝑎' ∇! log 𝑃! 𝑎' ∣ 𝑠

How do we compute the derivative of the log probability? Autodiff



Learning the policy function

We want max
!
𝔼"~$! 𝑅 𝑠, 𝑎	

Gradient ascent:
𝜃%&' ← 𝜃% + 𝛼∇!"𝔼"~$!" 𝑅 𝑠, 𝑎

But how do we estimate this gradient?

Answer: We use a neat trick to estimate the 
gradient of the expectation
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Policy gradient

We want max
!
𝔼"~$! 𝑅 𝑠, 𝑎

Gradient ascent with 𝑛	samples from 𝑝!:

𝜃%&' ← 𝜃% + 𝛼 ⋅
1
𝑛
4
*+'

,

𝑅 𝑠, 𝑎* ∇! log 𝑝! 𝑎* ∣ 𝑠
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Policy gradient

We want max
!
𝔼"~$! 𝑅 𝑠, 𝑎

Gradient ascent with 𝑛	samples from 𝑝!:

𝜃%&' ← 𝜃% + 𝛼 ⋅
1
𝑛
4
*+'

,

𝑅 𝑠, 𝑎* ∇! log 𝑝! 𝑎* ∣ 𝑠

This is a simplified version
There are many variants of this idea
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Policy gradient

We want max
!
𝔼"~$! 𝑅 𝑠, 𝑎

Gradient ascent with 𝑛	samples from 𝑝!:

𝜃%&' ← 𝜃% + 𝛼 ⋅
1
𝑛
4
*+'

,

𝑅 𝑠, 𝑎* ∇! log 𝑝! 𝑎* ∣ 𝑠

Note that we have no restriction on the reward 𝑅 𝑠, 𝑎 . It could be non-
differentiable, provided by the environment somehow, or provided by humans.
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REINFORCE algorithm

Repeat:
1. Sample 𝑛 actions 𝑎$, 𝑎M, ⋯ , 𝑎< at state 𝑠
2. Compute all rewards R(𝑎:, 𝑠)
3. Update parameters as:

𝜃!#$ ← 𝜃! + 𝛼 ⋅
1
𝑛
.
:;$

<

𝑅 𝑠, 𝑎: ∇" log 𝑝" 𝑎: ∣ 𝑠

For our purposes, the states could represent examples in our data and actions could 
be predictions of the discrete part of our neuro-symbolic system
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Compare to supervised maximum likelihood learning

Suppose we have a dataset of states paired with ground truth actions: D = (𝑠, 𝑎)	 whose 
probability we wish to maximize:

max
,

,
-,/ ∈1

log 𝑝,(𝑎 ∣ 𝑠)

We could optimize this using stochastic gradient ascent:

𝜃234 ← 𝜃2 + 𝛼 ⋅ ∇, log 𝑝, 𝑎 ∣ 𝑠

Compare to the update rule from policy gradient: 

𝜃234 ← 𝜃2 + 𝛼 ⋅
1
𝑛
,
564

7

𝑅 𝑠, 𝑎5 ∇, log 𝑝, 𝑎5 ∣ 𝑠
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Compare to supervised maximum likelihood learning

Suppose we have a dataset of states paired with ground truth actions: D = (𝑠, 𝑎)	 whose 
probability we wish to maximize:

max
,

,
-,/ ∈1

log 𝑝,(𝑎 ∣ 𝑠)

We could optimize this using stochastic gradient ascent:

𝜃234 ← 𝜃2 + 𝛼 ⋅ ∇, log 𝑝, 𝑎 ∣ 𝑠

Compare to the update rule from policy gradient: 

𝜃234 ← 𝜃2 + 𝛼 ⋅
1
𝑛
,
564

7

𝑅 𝑠, 𝑎5 ∇, log 𝑝, 𝑎5 ∣ 𝑠
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Similar terms in both cases



Compare to supervised maximum likelihood learning
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action and its probability 
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For the supervised case, 
the action 𝑎 is the “true” 
action and its probability 
will be made higher

We do not know which action is 
good. So we sample actions and 
weight the gradients associated 
with them by the reward



Problems with policy gradient 

Does it always work?

• Vanilla policy gradient tends to have high variance in gradient 
estimates
• There may be sudden jumps in performance, but training may be slow overall

• In practice: combine with variance reduction techniques
• Several approaches exist in the literature
• Let’s look at one: baselines
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Baselines

Our original update:

𝜃234 ← 𝜃2 + 𝛼 ⋅
1
𝑛
,
564

7

𝑅 𝑠, 𝑎5 ∇, log 𝑝, 𝑎5 ∣ 𝑠

Modify to:

𝜃234 ← 𝜃2 + 𝛼 ⋅
1
𝑛,
564

7

𝑅 𝑠, 𝑎5 − 𝑏(𝑠) ∇, log 𝑝, 𝑎5 ∣ 𝑠

Subtract a baseline from the reward
• Doing so reduces variance 
• But does not introduce any additional bias
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Baselines

Our original update:
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Subtract a baseline from the reward
• Doing so reduces variance 
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Baselines

Our original update:
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𝑛
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𝑅 𝑠, 𝑎5 ∇, log 𝑝, 𝑎5 ∣ 𝑠
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𝑛,
564

7

𝑅 𝑠, 𝑎5 − 𝑏(𝑠) ∇, log 𝑝, 𝑎5 ∣ 𝑠

Subtract a baseline from the reward
• Doing so reduces variance 
• But does not introduce any additional bias
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In practice: a good choice of 𝑏 𝑠  is

𝑏 𝑠 =
1
𝑛F
'()

*

𝑅(𝑠, 𝑎')

Not theoretically the best, but often good



Introducing a baseline is unbiased

Consider the expected reward: 
𝔼/~9+ 𝑅 𝑠, 𝑎 = 𝔼/~9+ 𝑅 𝑠, 𝑎 ∇, log 𝑝, 𝑎 ∣ 𝑠

With a baseline, we have:
𝔼/~9+ 𝑅 𝑠, 𝑎 − 𝑏(𝑠) ∇, log 𝑝, 𝑎 ∣ 𝑠

We can expand it as 
𝔼/~9+ 𝑅 𝑠, 𝑎 ∇, log 𝑝, 𝑎 ∣ 𝑠 − 𝔼/~9+ 𝑏(𝑠)∇, log 𝑝, 𝑎 ∣ 𝑠

The first term is the same as the original expectation 𝔼/~9+ 𝑅 𝑠, 𝑎

Let us focus on the second term
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This works by the linearity of expectations



Introducing a baseline is unbiased
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Introducing a baseline is unbiased (2)
Let us look at the second term

𝔼"~,! 𝑏(𝑠)∇! log 𝑝! 𝑎 ∣ 𝑠

We can expand the expectation to write:

F
"

𝑏 𝑠 𝑝! 𝑎 ∣ 𝑠 ∇! log 𝑝! 𝑎 ∣ 𝑠

Apply the REINFORCE trick to simplify:

F
"

𝑏 𝑠 ∇!𝑝! 𝑎 ∣ 𝑠 = 𝑏 𝑠 ∇!F
"

𝑝! 𝑎 ∣ 𝑠 = 0

What have we done: 
𝔼"~,! 𝑅 𝑠, 𝑎 − 𝑏(𝑠) ∇! log 𝑝! 𝑎 ∣ 𝑠 = 𝔼"~,! 𝑅 𝑠, 𝑎
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We could have written this as an 
integral, but let’s keep things simple
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The baseline 𝑏 𝑠 	doesn’t 
depend on the action 𝑎, so we 
can pull it out of the summation

And the sum of gradients is the 
gradient of the sum



Introducing a baseline is unbiased (2)
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This quantity is equal to 1 because it 
accumulates the entire support for the 
probability 𝑝!. Its derivative is zero



Introducing a baseline is unbiased (2)
Let us look at the second term
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𝔼"~,! 𝑅 𝑠, 𝑎 − 𝑏(𝑠) ∇! log 𝑝! 𝑎 ∣ 𝑠 = 𝔼"~,! 𝑅 𝑠, 𝑎  −𝔼"~,! 𝑏(𝑠)∇! log 𝑝! 𝑎 ∣ 𝑠
The entire second term vanishes



Introducing a baseline is unbiased (2)
Let us look at the second term

𝔼"~,! 𝑏(𝑠)∇! log 𝑝! 𝑎 ∣ 𝑠

We can expand the expectation to write:

F
"

𝑏 𝑠 𝑝! 𝑎 ∣ 𝑠 ∇! log 𝑝! 𝑎 ∣ 𝑠

Apply the REINFORCE trick to simplify:

F
"

𝑏 𝑠 ∇!𝑝! 𝑎 ∣ 𝑠 = 𝑏 𝑠 ∇!F
"

𝑝! 𝑎 ∣ 𝑠 = 0

What have we done: 
𝔼"~,! 𝑅 𝑠, 𝑎 − 𝑏(𝑠) ∇! log 𝑝! 𝑎 ∣ 𝑠 = 𝔼"~,! 𝑅 𝑠, 𝑎

62



REINFORCE algorithm with baselines

Repeat:
1. Sample 𝑛 actions 𝑎$, 𝑎M, ⋯ , 𝑎< at state 𝑠
2. Compute all rewards R(𝑎:, 𝑠)
3. Compute baseline 𝑏 𝑠 = $

<
∑:;$< 𝑅(𝑠, 𝑎:)

4. Update parameters as:

𝜃!#$ ← 𝜃! + 𝛼 ⋅
1
𝑛
.
:;$

<

𝑅 𝑠, 𝑎: − 𝑏 𝑠 ∇" log 𝑝" 𝑎: ∣ 𝑠

For our purposes, the states could represent examples in our data and actions could 
be predictions of the discrete part of our neuro-symbolic system
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REINFORCE: Summary

A useful tool when we have a black box system within a neural network

Caveats:
• Gradients will have high variance
• Variance control methods could help a little, but the gradients are still going to be 

noisy

In practice: this means that experiments will be tricky
• Use much larger batches than you may be used to
• Learning rates will matter, ADAM may be good

• There are learning rate adjustment strategies designed for policy gradient too
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