
Learning with symbols 
within neural networks: 
Straight-through estimators

Neuro-symbolic modeling



Neural networks containing discrete elements

Neural 
network

Discrete 
step

Neural 
networkInput Output/loss

Let’s see some examples



This lecture

• Motivating examples

• The straight-through estimator

• The Gumbel trick

• REINFORCE

(others if time permits)

Not all these approaches 
are always applicable



Binary values in neural networks?

Let us consider a simple neural network 
consisting of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥  to 
produce a set of 𝑑 scores

Each score is thresholded at zero to produce a 
d-dimensional binary vector 𝑧

The final output is then 𝑔"(𝑧)
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Let us write this formally

The prediction is 

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

We can define a loss over this prediction, say L 𝑦, y∗



Let us write this formally

The prediction is 

𝑦 = 	𝑔" Threshold 𝑓! 𝑥
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For convenience, let:
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𝑦 = 𝑔"(𝑧) 



We can try to compute gradients of the loss
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For convenience, let:
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This part is standard: 𝐿 and 𝑦 
are differentiable functions of 
the parameters 𝜃
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For convenience, let:
𝑓 = 	𝑓! 𝑥  
𝑧 = Threshold 𝑓  
𝑦 = 𝑔"(𝑧) 

This is not useful because #$
#%

 is zero almost 
everywhere and infinite at 𝑓 = 0



The straight through estimator

Let us write the derivative of this loss with respect to the parameters: 
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For the backward pass alone, pretend that 𝑧 is the result identity 
function

For convenience, let:
𝑓 = 	𝑓! 𝑥  
𝑧 = Threshold 𝑓  
𝑦 = 𝑔"(𝑧) 

Hinton, Geoffrey. “Neural networks for machine learning”. Coursera, lecture 15b (2012). 
Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional 
computation." arXiv preprint arXiv:1308.3432 (2013).
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For the backward pass alone, pretend that 𝑧 is the result identity 
function. So we can get rid of that partial derivative
 In the forward pass, it still uses the threshold function

For convenience, let:
𝑓 = 	𝑓! 𝑥  
𝑧 = Threshold 𝑓  
𝑦 = 𝑔"(𝑧) 
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Straight through estimator

𝑥

𝑓!

Hard threshold

𝑔"

During forward pass 
use this network
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The gradient difficulties due to discreteness are 
ignored

This gradient estimator is poorly motivated

Yet, it sometimes works! (And easy to implement)

During backward pass 
use this network
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𝑓!

Identity

𝑔"

The gradient difficulties due to discreteness are 
ignored

This gradient estimator is poorly motivated

Yet, it sometimes works! (And easy to implement)

One failure case: When there are dependencies 
between the binary variables, these are not 
accounted for in the gradient

During backward pass 
use this network


