
Learning with symbols
within neural networks:
Straight-through estimators

Neuro-symbolic modeling

Neural networks containing discrete elements

Neural
network

Discrete
step

Neural
networkInput Output/loss

Let’s see some examples

This lecture

• Motivating examples

• The straight-through estimator

• The Gumbel trick

• REINFORCE

(others if time permits)

Not all these approaches
are always applicable

Binary values in neural networks?

Let us consider a simple neural network
consisting of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to
produce a set of 𝑑 scores

Each score is thresholded at zero to produce a
d-dimensional binary vector 𝑧

The final output is then 𝑔"(𝑧)

Binary values in neural networks?

Let us consider a simple neural network
consisting of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to
produce a set of 𝑑 scores

Each score is thresholded at zero to produce a
d-dimensional binary vector 𝑧

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Binary values in neural networks?

Let us consider a simple neural network
consisting of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to
produce a set of 𝑑 scores

Each score is thresholded at zero to produce a
d-dimensional binary vector 𝑧

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Hard threshold

Binary values in neural networks?

Let us consider a simple neural network
consisting of two sets of parameters 𝜙 and 𝜃

Given an example 𝑥, it computes 𝑓! 𝑥 to
produce a set of 𝑑 scores

Each score is thresholded at zero to produce a
d-dimensional binary vector 𝑧

The final output is then 𝑔"(𝑧)

𝑥

𝑓!

Hard threshold

𝑝"

Let us write this formally

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

Let us write this formally

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

We can define a loss over this prediction, say L 𝑦, y∗

Let us write this formally

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

We can define a loss over this prediction, say L 𝑦, y∗

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

We can try to compute gradients of the loss

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑧
𝜕𝑓

⋅
𝜕𝑓
𝜕𝜙

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

We can try to compute gradients of the loss

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑧
𝜕𝑓

⋅
𝜕𝑓
𝜕𝜙

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

This part is standard: 𝐿 and 𝑦
are differentiable functions of
the parameters 𝜃

We can try to compute gradients of the loss

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑧
𝜕𝑓

⋅
𝜕𝑓
𝜕𝜙

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

We can try to compute gradients of the loss

The prediction is

𝑦 = 	𝑔" Threshold 𝑓! 𝑥

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑧
𝜕𝑓

⋅
𝜕𝑓
𝜕𝜙

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

This is not useful because #$
#%

 is zero almost
everywhere and infinite at 𝑓 = 0

The straight through estimator

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑧
𝜕𝑓

⋅
𝜕𝑓
𝜕𝜙

For the backward pass alone, pretend that 𝑧 is the result identity
function

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

Hinton, Geoffrey. “Neural networks for machine learning”. Coursera, lecture 15b (2012).
Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional
computation." arXiv preprint arXiv:1308.3432 (2013).

The straight through estimator

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑓
𝜕𝜙

For the backward pass alone, pretend that 𝑧 is the result identity
function. So we can get rid of that partial derivative

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

Hinton, Geoffrey. “Neural networks for machine learning”. Coursera, lecture 15b (2012).
Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional
computation." arXiv preprint arXiv:1308.3432 (2013).

The straight through estimator

Let us write the derivative of this loss with respect to the parameters:

∇"L =
𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝜃
	 ∇!L =

𝜕𝐿
𝜕𝑦

⋅
𝜕𝑦
𝜕𝑧

⋅
𝜕𝑓
𝜕𝜙

For the backward pass alone, pretend that 𝑧 is the result identity
function. So we can get rid of that partial derivative
 In the forward pass, it still uses the threshold function

For convenience, let:
𝑓 = 	𝑓! 𝑥
𝑧 = Threshold 𝑓
𝑦 = 𝑔"(𝑧)

Hinton, Geoffrey. “Neural networks for machine learning”. Coursera, lecture 15b (2012).
Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional
computation." arXiv preprint arXiv:1308.3432 (2013).

Straight through estimator

𝑥

𝑓!

Hard threshold

𝑔"

During forward pass
use this network

𝑥

𝑓!

Identity

𝑔"

The gradient difficulties due to discreteness are
ignored

This gradient estimator is poorly motivated

Yet, it sometimes works! (And easy to implement)

During backward pass
use this network

Straight through estimator

𝑥

𝑓!

Hard threshold

𝑔"

During forward pass
use this network

𝑥

𝑓!

Identity

𝑔"

The gradient difficulties due to discreteness are
ignored

This gradient estimator is poorly motivated

Yet, it sometimes works! (And easy to implement)

One failure case: When there are dependencies
between the binary variables, these are not
accounted for in the gradient

During backward pass
use this network

