
CS 6355: Structured Prediction

Predicting Sequences:
Global Models

1

Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences

2

So far…

• Hidden Markov models
– Pros: Decomposition of total probability with tractable inference
– Cons: Doesn’t allow use of features for representing inputs

• Also, generative model
(not really a downside, but we may get better performance with conditional
models if we care only about predictions)

• Local, conditional Markov Models
– Pros: Conditional model, allows features to be used, tractable

inference
– Cons: Label bias problem

3

Global models

• Train the predictor globally
– Instead of training local decisions independently

• Normalize globally
– Make each edge in the model undirected
– Not associated with a probability, but just a “score”

• Recall the difference between local vs. global for
multiclass

4

HMM vs. A local model vs. A global model

5

yt-1 yt

xt

yt-1 yt

xt
HMM Conditional

model

yt-1 yt

xt
Global
model

P(yt | yt-1)

P(xt | yt)

P(yt | yt-1, xt) fT(yt, yt-1)

fE(yt, xt)

Local: P is locally
normalized to add up
to one for each t

Global: The functions fT
and fE are scores that
are not normalized

Generative Discriminative

HMM vs. A local model vs. A global model

6

yt-1 yt

xt

yt-1 yt

xt
HMM Conditional

model

yt-1 yt

xt
Global
model

P(yt | yt-1)

P(xt | yt)

P(yt | yt-1, xt) fT(yt, yt-1)

fE(yt, xt)

Local: P is locally
normalized to add up
to one for each step

Global: The functions fT
and fE are scores that
are not normalized

Generative Discriminative

HMM vs. A local model vs. A global model

7

yt-1 yt

xt

yt-1 yt

xt
HMM Conditional

model

yt-1 yt

xt
Global
model

P(yt | yt-1)

P(xt | yt)

P(yt | yt-1, xt) fT(yt, yt-1)

fE(yt, xt)

Local: P is locally
normalized to add up
to one for each step

Global: The functions fT
and fE are scores that
are not normalized

Generative Discriminative

Conditional Random Field

8

y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved

Conditional Random Field

9

y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved

For example:
• x could be a random variable representing an input video,
• the y’s could represent whether the corresponding time step is at the start, end, or

within a scene.

Conditional Random Field

10

y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the unobserved
variables, conditioned on the observed ones.

That is, to characterize 𝑃 𝑦!, 𝑦", ⋯ 𝐱 .

Scoring assignments to outputs

11

y0 y1 y2 y3

x

Each node is a random variable
We observe some nodes and
the rest are unobserved

The strategy: Each clique is associated with a score

Scoring assignments to outputs

12

y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1)

The strategy: Each clique is associated with a score

Scoring assignments to outputs

13

y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1) 𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!)

The strategy: Each clique is associated with a score

Scoring assignments to outputs

14

y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1) 𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!) 𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦2, 𝑦3)

The strategy: Each clique is associated with a score

Scoring assignments to outputs

15

y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1)
= 𝐰"𝜙(𝑥, 𝑦#, 𝑦$)

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!)
= 𝐰"𝜙(𝑥, 𝑦$, 𝑦!)

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦2, 𝑦3)
= 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

The strategy: Each clique is associated with a score

The usual scoring function: A linear function of
weights and features of the associated nodes

Scoring assignments to outputs

16

y0 y1 y2 y3

x

𝐰"𝜙(𝑥, 𝑦#, 𝑦$) 𝐰"𝜙(𝑥, 𝑦$, 𝑦!) 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score, typically linear

Arbitrary features, as with
local conditional models

Another notation: A factor graph

17

Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦1, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

Factors

factor

Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes

18

Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions

19

y0 y1 y2 y3

x

Random variables

Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions

20

y0 y1 y2 y3

x

Factors

Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions
– Edges: Random variables that interact with each other (think parts)

21

y0 y1 y2 y3

x

Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions

• Semantics: All random variables that are connected to a factor
are scored together. That is, each factor corresponds to a
score.

22

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦1, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

Scoring assignments to outputs

23

y0 y1 y2 y3

x

𝐰"𝜙(𝑥, 𝑦#, 𝑦$) 𝐰"𝜙(𝑥, 𝑦$, 𝑦!) 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score, typically linear

Arbitrary features, as with
local conditional models

Scoring with factor graphs

24

Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score
factor

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

Scoring with factor graphs

25

y0 y1 y2 y3

x

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable

We observe some nodes and need to assign the rest

Each factor is associated with a score

Scoring with factor graphs

26

wT𝜙(y0, y1) wT𝜙(y1, y2) wT𝜙(y2, y3)

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable

We observe some nodes and need to assign the rest

Each factor is associated with a score

y0 y1 y2 y3

x

Scoring with factor graphs

27

wT𝜙(y0, y1) wT𝜙(y1, y2) wT𝜙(y2, y3)wT𝜙(y0, x) wT𝜙(y1, x) wT𝜙(y2, x) wT𝜙(y3, x)

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable

We observe some nodes and need to assign the rest

Each factor is associated with a score

y0 y1 y2 y3

x

From scores to a probability

28

Recall our goal: To characterize a probability distribution over the
unobserved variables, conditioned on the observed ones.

That is, to characterize 𝑃 𝑦!, 𝑦", ⋯ 𝐱 .

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

From scores to a probability

29

𝑃 𝐲 ∣ 𝐱 ∝ *
#∈%&'()*+

exp score 𝑓𝑎𝑐𝑡𝑜𝑟

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

From scores to a probability

30

𝑃 𝐲 ∣ 𝐱 ∝*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

From scores to a probability

31

𝑃 𝐲 ∣ 𝐱 =
1

𝑍 𝐱
*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

To get a probability, we need to normalize this using a term 𝑍 𝐱 that ensures
that the probabilities add up to one.

From scores to a probability

32

𝑃 𝐲 ∣ 𝐱 =
1

𝑍 𝐱
*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

To get a probability, we need to normalize this using a term 𝑍 𝐱 that ensures
that the probabilities add up to one.

𝑍 𝐱 =2
&'

3
(

exp 𝑤"𝜙(𝑥, 𝑦()$, 𝑦(

Called the
partition
function

Conditional Random Fields

33

𝑃 𝐲 ∣ 𝐱 =
1

𝑍 𝐱
*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

The conditional probability of the labels given the input is a
product of normalized factor scores.

Such models are called conditional random fields.

CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences

34

In an MEMM, probabilities were locally normalized

𝑃 𝒚 𝒙 =
1
𝑍
3
(

exp(𝒘"𝜙(𝒙, 𝑦(, 𝑦()$) ∝ exp 𝑤"2
(

𝜙(𝒙, 𝑦(, 𝑦()$)

CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences

35

In an MEMM, probabilities were locally normalized

CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences

36

In an MEMM, probabilities were locally normalized

Global features

The feature function decomposes over the factors in sequence
(that is, the factor graph)

Φ 𝐱, 𝐲 =&
<

𝜙(𝑥, 𝑦<=>, 𝑦<)

37

y0 y1 y2 y3

x

𝐰𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝐰𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝐰𝑇𝜙(𝒙, 𝑦2, 𝑦3)

Where are we?

• We have seen how a CRF assigns probabilities to
sequences
– Global normalization instead of local normalization
– Avoid the label bias problem because of this

• Next:
– How to predict the most probable sequence
– How to train the scoring functions

38

Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case:

scoreB s = max
C!"#

𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=>)

Prediction

39

Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case:

scoreB s = max
C!"#

𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=>)

Prediction

40

Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case:

scoreB s = max
C!"#

𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=>)

Prediction

41

Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case:

scoreB s = max
C!"#

𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=>)

Prediction

42

Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case:

scoreB s = max
C!"#

𝐰?𝜙 𝐱, 𝑦<=>, 𝑦< + score<=>(𝑦<=>)

Prediction

43

Training a chain CRF

• Input:
– Dataset with labeled sequences, D = {<xi, yi>}
– A definition of the feature function

• How do we train?
– Maximize the (regularized) log-likelihood

44

Recall: Empirical loss minimization

Training with inference

• Many methods for training
– Numerical optimization
– Can use a gradient or hessian based method

• Simple gradient ascent

• Training involves inference!
– A different kind than what we have seen so far
– Summing over all sequences is just like Viterbi

• With summation instead of maximization

45

Training with inference

• Many methods for training
– Numerical optimization
– Can use a gradient or hessian based method

• Simple gradient ascent

• Training involves inference!
– A different kind than what we have seen so far
– Summing over all sequences is just like Viterbi

• With summation instead of maximization

46

CRF (for sequences): Summary

• An undirected graphical model
– Decompose the score over the structure into a collection of factors
– Each factor assigns a score to assignment of the random variables it is

connected to

• Training and prediction
– Final prediction via argmax wT𝜙(x, y)
– Train by maximum (regularized) likelihood

• Relation to other models
– Effectively a linear classifier
– A generalization of logistic regression to structures
– An instance of Markov Random Field, with some random variables

observed
• We will see this soon

47

