
CS 6355: Structured Prediction

Predicting Sequences:
Global Models

1



Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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So far…

• Hidden Markov models
– Pros: Decomposition of total probability with tractable inference
– Cons: Doesn’t allow use of features for representing inputs

• Also, generative model
(not really a downside, but we may get better performance with conditional 
models if we care only about predictions)

• Local, conditional Markov Models 
– Pros: Conditional model, allows features to be used, tractable 

inference
– Cons: Label bias problem
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Global models

• Train the predictor globally
– Instead of training local decisions independently

• Normalize globally
– Make each edge in the model undirected
– Not associated with a probability, but just a “score”

• Recall the difference between local vs. global for 
multiclass
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HMM vs. A local model vs. A global model
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Conditional Random Field
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Conditional Random Field
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y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved

For example: 
• x could be a random variable representing an input video, 
• the y’s could represent whether the corresponding time step is at the start, end, or 

within a scene.



Conditional Random Field
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Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the unobserved 
variables, conditioned on the observed ones. 

That is, to characterize 𝑃 𝑦!, 𝑦", ⋯ 𝐱 .



Scoring assignments to outputs
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Scoring assignments to outputs
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Scoring assignments to outputs
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𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1)
= 𝐰"𝜙(𝑥, 𝑦#, 𝑦$)

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!)
= 𝐰"𝜙(𝑥, 𝑦$, 𝑦!)

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦2, 𝑦3)
= 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

The strategy: Each clique is associated with a score

The usual scoring function: A linear function of 
weights and features of the associated nodes



Scoring assignments to outputs
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Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score, typically linear

Arbitrary features, as with 
local conditional models



Another notation: A factor graph
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Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score
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Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
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Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
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Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions
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Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions
– Edges: Random variables that interact with each other (think parts)
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Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions

• Semantics: All random variables that are connected to a factor 
are scored together. That is, each factor corresponds to a 
score.
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Scoring assignments to outputs
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Scoring with factor graphs
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Scoring with factor graphs
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Scoring with factor graphs
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Scoring with factor graphs
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From scores to a probability
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Recall our goal: To characterize a probability distribution over the 
unobserved variables, conditioned on the observed ones. 

That is, to characterize 𝑃 𝑦!, 𝑦", ⋯ 𝐱 .
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From scores to a probability
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From scores to a probability
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From scores to a probability
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To get a probability, we need to normalize this using a term 𝑍 𝐱 that ensures 
that the probabilities add up to one.



From scores to a probability
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Conditional Random Fields
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Such models are called conditional random fields.



CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences
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In an MEMM, probabilities were locally normalized
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Global features

The feature function decomposes over the factors in sequence 
(that is, the factor graph)

Φ 𝐱, 𝐲 =&
<

𝜙(𝑥, 𝑦<=>, 𝑦<)
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Where are we?

• We have seen how a CRF assigns probabilities to 
sequences
– Global normalization instead of local normalization
– Avoid the label bias problem because of this

• Next:
– How to predict the most probable sequence 
– How to train the scoring functions
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Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case: 

scoreB s = max
C!"#

𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=> )

Prediction
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Training a chain CRF

• Input: 
– Dataset with labeled sequences, D = {<xi, yi>}
– A definition of the feature function 

• How do we train?
– Maximize the (regularized) log-likelihood
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Recall: Empirical loss minimization



Training with inference

• Many methods for training
– Numerical optimization
– Can use a gradient or hessian based method

• Simple gradient ascent

• Training involves inference! 
– A different kind than what we have seen so far 
– Summing over all sequences is just like Viterbi

• With summation instead of maximization
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Training with inference

• Many methods for training
– Numerical optimization
– Can use a gradient or hessian based method

• Simple gradient ascent

• Training involves inference! 
– A different kind than what we have seen so far 
– Summing over all sequences is just like Viterbi

• With summation instead of maximization
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CRF (for sequences): Summary

• An undirected graphical model
– Decompose the score over the structure into a collection of factors
– Each factor assigns a score to assignment of the random variables it is 

connected to

• Training and prediction
– Final prediction via argmax wT𝜙(x, y)
– Train by maximum (regularized) likelihood

• Relation to other models
– Effectively a linear classifier
– A generalization of logistic regression to structures
– An instance of Markov Random Field, with some random variables 

observed
• We will see this soon
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