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Outline

* Sequence models

e Hidden Markov models

— Inference with HMM
— Learning

e Conditional Models and Local Classifiers

 Global models

— Conditional Random Fields

— Structured Perceptron for sequences



So far...

 Hidden Markov models
— Pros: Decomposition of total probability with tractable inference

— Cons: Doesn’t allow use of features for representing inputs

e Also, generative model

(not really a downside, but we may get better performance with conditional
models if we care only about predictions)

* Local, conditional Markov Models

— Pros: Conditional model, allows features to be used, tractable
inference

— Cons: Label bias problem



Global models

* Train the predictor globally

— Instead of training local decisions independently

* Normalize globally

— Make each edge in the model undirected
— Not associated with a probability, but just a “score”

e Recall the difference between local vs. global for
multiclass



HMM vs. A local model vs. A global model

P(y: | Ye1)

P(X¢ | i)

HMM °

Generative




HMM vs. A local model vs. A global model

P(V: | Yi1) P(Ve | Vi1, Xt)
P(x; | yi)
HMM Conditional
model
Generative Discriminative

Local: P is locally
normalized to add up
to one for each step




HMM vs. A local model vs. A global model
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model model @
Generative Discriminative
Local: P is locally Global: The functions fT
normalized to add up and ft are scores that

to one for each step are not normalized




Conditional Random Field

G\GQG,G

Each node is a random variable

We observe some nodes and the rest are unobserved



Conditional Random Field

G\GQG,G

Each node is a random variable

We observe some nodes and the rest are unobserved

For example:

* xcould be a random variable representing an input video,

* they’s could represent whether the corresponding time step is at the start, end, or
within a scene.



Conditional Random Field

G\GQG,G

Each node is a random variable
We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the unobserved
variables, conditioned on the observed ones.

That is, to characterize P(yg, 1, *** | X).
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Scoring assignments to outputs

Each node is a random variable
We observe some nodes and
the rest are unobserved

The strategy: Each clique is associated with a score
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Scoring assignments to outputs
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score(x, Yo, V1)

The strategy: Each clique is associated with a score
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Scoring assignments to outputs

score(x, Vo, V1) score(x,y1,V;)

The strategy: Each clique is associated with a score
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Scoring assignments to outputs

score(x, Yo, Y1) score(x,y1,y;) score(x,y; yz3)

The strategy: Each clique is associated with a score
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Scoring assignments to outputs

score(x, Yo, V1) score(x,y1,y,) score(x,y, Yy3)
=w ¢, Y0, 71) =W o(xy,y2) =W o(x, v, Y3)

The strategy: Each clique is associated with a score

The usual scoring function: A linear function of
weights and features of the associated nodes
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Scoring assignments to outputs

WT¢(xryOry1) WT¢(X,y1,y2) WT¢(xry27y3)

Each node is a random variable

Arbitrary features, as with

We observe some nodes and need to assign the rest local conditional models

Each clique is associated with a score, typically linear -



Another notation: A factor graph

.~ Factors -

wT¢(x, Yo, yl) WT¢(X, Yi yZ) WT¢(X, Y2 }73)
Each node is a random variable
We observe some nodes and need to assign the rest

factor
Each elgue is associated with a score
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Notation: A factor graph

* A bipartite graph consisting of two kinds of nodes
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Notation: A factor graph

* A bipartite graph consisting of two kinds of nodes

— Random variables (usually circles) represent decisions
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Notation: A factor graph

* A bipartite graph consisting of two kinds of nodes
— Random variables (usually circles) represent decisions
— Factors (usually squares) represent interactions

Factors "

orioriolnto
O
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Notation: A factor graph

* A bipartite graph consisting of two kinds of nodes
— Random variables (usually circles) represent decisions
— Factors (usually squares) represent interactions
— Edges: Random variables that interact with each other (think parts)
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Notation: A factor graph

* A bipartite graph consisting of two kinds of nodes
— Random variables (usually circles) represent decisions
— Factors (usually squares) represent interactions

 Semantics: All random variables that are connected to a factor
are scored together. That is, each factor corresponds to a
score.

WT(P (x' Yo yl) WT¢ (xr Yi yZ) WT¢ (xr Y2, y3) -



Scoring assignments to outputs

WT¢(xryOry1) WT¢(X,y1,y2) WT¢(xry27y3)

Each node is a random variable

Arbitrary features, as with

We observe some nodes and need to assign the rest local conditional models

Each clique is associated with a score, typically linear .



Scoring with factor graphs

WT(nb (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, }73)

Each node is a random variable
We observe some nodes and need to assign the rest

factor
Each elgue is associated with a score
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Scoring with factor graphs

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable
We observe some nodes and need to assign the rest

Each factor is associated with a score
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Scoring with factor graphs

A different factorization: Recall decomposition of structures into parts. Same idea

p
W' (Yo, Y1) wip(y1, ¥,) W p(y,, V3)

Each node is a random variable
We observe some nodes and need to assign the rest

Each factor is associated with a score
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Scoring with factor graphs

A different factorization: Recall decomposition of structures into parts. Same idea

©
14

g 17 ¥ v N
W' h(yo, Y1) WTd(yo, X) WIP(y1, ¥2) Wi(yy, X) Wid(y,, x) Wid(ys, x) WT(y,, v3)

Each node is a random variable
We observe some nodes and need to assign the rest

Each factor is associated with a score
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From scores to a probability

WT(p (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, y3)

Recall our goal: To characterize a probability distribution over the
unobserved variables, conditioned on the observed ones.

That is, to characterize P(yg, y1, -+ | X).
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From scores to a probability

WT(nb (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, }73)

P(y | x) « 1—[ exp(score(factor))

f€efactors
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From scores to a probability

WT(nb (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, }73)

P(y | x) « 1_[ exp(wl (X, ¥i-1,¥1))

l
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From scores to a probability

WT(nb (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, }73)

1
P(y I x) = 700 1_[ exp(WT (X, yi-1,¥1))

To get a probability, we need to normalize this using a term Z(x) that ensures
that the probabilities add up to one.
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From scores to a probability

WT(p (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, y3)

1
P(y I x) = 700 1_[ exp(WT (X, yi-1,¥1))

To get a probability, we need to normalize this using a term Z(x) that ensures
that the probabilities add up to one.

Called the
. partition
Z(x) = Z HGXP(W ¢(x,yi-1, Y1) function

y i
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Conditional Random Fields

WT(p (xr Yo, yl) WT(nb (xr Y1, yZ) WT¢ (x’ Y2, y3)

1
P(y I x) = 700 1_[ exp(WT (X, yi-1,¥1))

The conditional probability of the labels given the input is a
product of normalized factor scores.

Such models are called conditional random fields.
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CRF: A different view

* |Input: x, Output: y, sequence (for now)

* Define a feature vector for the entire input and output sequence: ®(x,y)
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CRF: A different view

* |Input: x, Output: y, sequence (for now)
* Define a feature vector for the entire input and output sequence: ®(x,y)

e Define a giant log-linear model, P(y | x) parameterized by w

1
P(ylx) =~ 1_[ exp(WPp(x, y;,¥i—1)) o exp (wT Z (x, yi, yi-1)>

35



CRF: A different view

Input: x, Output: y, sequence (for now)
Define a feature vector for the entire input and output sequence: ®(x,y)

Define a giant log-linear model, P(y | x) parameterized by w

1
P(ylx) =~ 1_[ exp(WPp(x, y;,¥i—1)) o exp (wT Z (x, yi, yi-1)>

— Just like any other log-linear model, except
* Space of y is the set of all possible sequences of the correct length
* Normalization constant sums over all sequences

In an MEMMI, probabilities were locally normalized
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Global features

The feature function decomposes over the factors in sequence
(that is, the factor graph)

d(x,y) = z b (X, Yi—1,Yi)

WT(P (x' Yo yl) WT(P (x' Y1, yZ) WT¢ (xr Y2 y3)
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Where are we?

 We have seen how a CRF assigns probabilities to
sequences
— Global normalization instead of local normalization

— Avoid the label bias problem because of this

* Next:
— How to predict the most probable sequence
— How to train the scoring functions
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Prediction

Goal: To predict most probable sequence y for an input x
argmax P(y | x) = argmax exp(w? ®(x,y))
y y
= argmaxw’ ®(x,y)
y
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Prediction

Goal: To predict most probable sequence y for an input x

argmax P(y | x) = argmax exp(w’ ®(x,y))
y y
= argmaxw’ ®(x,y)
y

But the score decomposes as w! ®(x,y) = Y; Wl (X, yi_1, Vi)
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Prediction

Goal: To predict most probable sequence y for an input x

argmax P(y | x) = argmax exp(w’ ®(x,y))
y y
= argmaxw’ ®(x,y)
y

But the score decomposes as w! ®(x,y) = Y; Wl (X, yi_1, Vi)

Prediction via Viterbi (with sum instead of product)
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Prediction

Goal: To predict most probable sequence y for an input x

argmax P(y | x) = argmax exp(w’ ®(x,y))
y y
= argmaxw’ ®(x,y)
y

But the score decomposes as w! ®(x,y) = Y; Wl (X, yi_1, Vi)

Prediction via Viterbi (with sum instead of product)
1. Base case: scorey(s) = w!lg(x, start, y,)
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Prediction

Goal: To predict most probable sequence y for an input x

argmax P(y | x) = argmax exp(w’ ®(x,y))
y y
= argmaxw’ ®(x,y)
y

But the score decomposes as w! ®(x,y) = Y; Wl (X, yi_1, Vi)

Prediction via Viterbi (with sum instead of product)
1. Base case: scorey(s) = w!lg(x, start, y,)
2. Recursive case:

score;(s) = max (W'ep(x,yi—1,yi) + score;_1 (¥i-1))
-1
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Training a chain CRF

* Input:
— Dataset with labeled sequences, D = {<x, y;>}
— A definition of the feature function

 How do we train?

— Maximize the (regularized) log-likelihood

A
max — §WTW + Z log P(y;|x;, W)

Recall: Empirical loss minimization
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Training with inference
max —%WTW + Z log P(y;|x;, w)

W
 Many methods for training
— Numerical optimization
— Can use a gradient or hessian based method

 Simple gradient ascent

W Wty <¢(Xi7Yi) - Py, W)¢(Xi,§’))

y
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Training with inference
max —%WTW + Z log P(y;|x;, w)

W
 Many methods for training
— Numerical optimization
— Can use a gradient or hessian based method

 Simple gradient ascent

ST =
W(—W‘l‘z <¢(X’L)yz) f:ZP(Y|Xz,W>¢(X“y))J
i SY -

‘—_ -

* Training involves inference! /

— A different kind than what we have seen so far

— Summing over all sequences is just like Viterbi
* With summation instead of maximization

46



CRF (for sequences): Summary

 An undirected graphical model
— Decompose the score over the structure into a collection of factors

— Each factor assigns a score to assignment of the random variables it is
connected to

* Training and prediction
— Final prediction via argmax w'¢(x, y)
— Train by maximum (regularized) likelihood

* Relation to other models
— Effectively a linear classifier
— A generalization of logistic regression to structures

— An instance of Markov Random Field, with some random variables
observed

* We will see this soon
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