
CS 6355: Structured Prediction

Predicting Sequences: 
Hidden Markov Models
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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Sequences

• Sequences of states
– Text is a sequence of words or even letters
– A video is a sequence of frames

• Even with a finite set of states, the set of unique state sequences is 
infinite

• Our goal (for now): Define probability distributions over sequences

• If 𝑥!, 𝑥", ⋯ , 𝑥# is a sequence that has 𝑛 tokens, we want to be able 
to define 𝑃 𝑥!, 𝑥", ⋯ , 𝑥#

…for all values of 𝑛
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A history-based model

𝑃 𝑥!, 𝑥", ⋯ , 𝑥# =&
$%!

#

𝑃 𝑥$ ∣ 𝑥!, 𝑥", ⋯ , 𝑥$&!

Each token is dependent on every token that came 
before it
– Simple conditioning
– Each P 𝑥! ∣ 𝑥", 𝑥#, ⋯ , 𝑥!$" is a multinomial probability 

distribution over the tokens
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It was a bright cold day in April.

Example: A Language model 
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Example: A Language model 
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Example: A Language model 
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Probability of a word following “It was”
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10

Probability of a word following “It was”

Probability of a word following “It was a”



It was a bright cold day in April.

Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “It was”

Probability of a word following “It was a”

Example: A Language model 

11What’s the problem with this strategy?



A history-based model

𝑃 𝑥", 𝑥#, ⋯ , 𝑥$ =&
%&"

$

𝑃 𝑥% ∣ 𝑥", 𝑥#, ⋯ , 𝑥%'"

Each token is dependent on every token that came before it
– Simple conditioning
– Each P 𝑥$ ∣ 𝑥!, 𝑥", ⋯ , 𝑥$%! is a multinomial probability 

distribution over the tokens

What’s the problem with this strategy?
– How many parameters do we have? 

• Grows with the size of the sequence!
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Solution: Lose the history

Make a modeling assumption: The first-order Markov 
assumption 

The state of the system at any time is independent of the full 
sequence history given the previous state

𝑃 𝑥$ 𝑥!, 𝑥", ⋯ , 𝑥$&! = 𝑃(𝑥$ ∣ 𝑥$&!)

This allows us to simplify 

𝑃 𝑥!, 𝑥", 𝑥', ⋯ , 𝑥# =&
$

𝑃(𝑥$ ∣ 𝑥!, 𝑥"⋯ , 𝑥$&!)
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First-order Markov models

Defined by two sets of probabilities

1. The initial state distribution: The probability that a 
sequence starts at a certain state 𝑗: 𝑃(𝑥! = state()

2. The state transition distribution: The probability 
that the system will transition to a state 𝑘 at some 
step if it was at a state 𝑗 at the previous step:  
𝑃(𝑥)*!state+ ∣ 𝑥)= state()
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Example: Another language model

It was a bright cold day in April

17

Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “was”

Probability of a word following “a”



Example: Another language model

It was a bright cold day in April
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Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “was”

Probability of a word following “a”

If there are K tokens/states, how many parameters 
do we need? 



Example: Another language model

It was a bright cold day in April
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Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “was”

Probability of a word following “a”

If there are K tokens/states, how many parameters 
do we need? O(K2)



Example: The weather

Three states: rain, cloudy, sunny

Suppose the observations are Markov chains:
Eg: cloudy sunny sunny rain

• Probability of the sequence = 
P(cloudy) P(sunny|cloudy) P(sunny | sunny) P(rain | sunny)
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State transitions:

Initial probability Transition probabilities

These probabilities define the model; can find P(any sequence)



mth order Markov Model

A generalization of the first order Markov Model

– Each state is only dependent on m previous states

– More parameters
– But still less than storing entire history
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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Hidden Markov Model

• Discrete Markov Model: 
– States follow a Markov chain
– Each state is an observation

• Hidden Markov Model:
– States follow a Markov chain
– States are not observed
– Each state stochastically emits an observation
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Example: Part of speech tagging

Given a sentence, find parts of speech of all the words

25

The Fed raises interest rates
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Example: Part of speech tagging

Given a sentence, find parts of speech of all the words
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Determiner Noun Verb Noun Noun

Verb Verb VerbOther possible tags 
in different contexts

The Fed raises interest rates

(He rates movies online)
(Poems interest me)

Noun
(Annual raises)

(I fed the dog)



Example: Part of speech tagging

Given a sentence, find parts of speech of all the words

28

Determiner Noun Verb Noun Noun

Verb Verb VerbOther possible tags 
in different contexts

The Fed raises interest rates

(He rates movies online)
(Poems interest me)

Noun
(Annual raises)

(I fed the dog)

If these were the only options allowed, we will have 1×2×2×2×2 = 16
possible output sequences



Toy part of speech example
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Determiner Noun

Verb

Transitions

Each edge here is associated 
with a transition probability



Toy part of speech example
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Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…

Each edge here is associated 
with a transition probability

Emission probabilities: Given that 
the system is in a certain state, 
these are probabilities that it will 
emit a certain observation



Toy part of speech example

31

Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…

Each edge here is associated 
with a transition probability

Initial probabilities: What is the 
probability that the sequence starts 
in a certain state?

P(Determiner) = 0.9
P(Noun) = 0.08
P(Verb) = 0.02

Initial

Emission probabilities: Given that 
the system is in a certain state, 
these are probabilities that it will 
emit a certain observation



Toy part of speech example
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start

Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…



Toy part of speech example
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Determinerstart

Determiner Noun

Verb

Transitions Emissions

Initial

P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…



Toy part of speech example
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The

Determinerstart

Determiner Noun

Verb

Transitions Emissions

emission

P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…



Toy part of speech example
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The

Determiner Nounstart

Determiner Noun

Verb

Transitions Emissions

transition

P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…



Toy part of speech example
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The

Determiner

Fed

Nounstart

Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…

emission



Toy part of speech example
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The

Determiner

Fed

Noun Verbstart

Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
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P(The| Noun) = 0
…

transition



Toy part of speech example
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Noun
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Verbstart

Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
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P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
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P(interest| Noun) = 0.07
P(The| Noun) = 0
…

emission



Toy part of speech example
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Toy part of speech example
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Toy part of speech example
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Determiner

Fed

Noun

raises

Verb
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Noun Nounstart
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Toy part of speech example
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The

Determiner

Fed

Noun

raises

Verb

interest

Noun

rates

Nounstart

Determiner Noun

Verb

Transitions Emissions
P(The | Determiner) = 0.5
P(A | Determiner) = 0.3
P(An | Determiner) = 0.1
P(Fed | Determiner) = 0
…

P(Fed| Noun) = 0.001
P(raises| Noun) = 0.04
P(interest| Noun) = 0.07
P(The| Noun) = 0
…

emission



Joint model over states and observations

• Notation
– Number of states = 𝐾
– Number of possible observations for any state = 𝑀
– 𝜋: Initial probability over states  (𝐾 − 1 numbers)
– 𝐴: Transition probabilities (𝐾×𝐾 matrix)
– 𝐵: Emission probabilities (𝐾×𝑀 matrix)
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Joint model over states and observations

• Notation
– Number of states = 𝐾
– Number of possible observations for any state = 𝑀
– 𝜋: Initial probability over states  (𝐾 − 1 numbers)
– 𝐴: Transition probabilities (𝐾×𝐾 matrix)
– 𝐵: Emission probabilities (𝐾×𝑀 matrix)

• Probability of states and observations
– Denote states by y1, y2, ! and observations by x1, x2, !
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Example: Named Entity Recognition

Goal: To identify persons, locations and organizations in 
text

Facebook CEO Mark  Zuckerberg announced new

privacy features in the conference in San   Francisco

45

Observations



Example: Named Entity Recognition

Goal: To identify persons, locations and organizations in 
text

B-org     O   B-per I-per       O         O  

Facebook CEO Mark  Zuckerberg announced new
O        O      O O   O          O B-loc I-loc

privacy features in the conference in San   Francisco

46

Observations
States



Numerous other applications

• Speech recognition
– Input: Speech signal
– Output: Sequence of words

• NLP applications
– Information extraction
– Text chunking 

• Computational biology
– Aligning protein sequences
– Labeling nucleotides in a sequence as exons, introns, etc.

47
Questions?



Three questions for HMMs

1. Given an observation sequence 𝑥1, 𝑥2,!, 𝑥𝑛 and a 
model (𝜋, 𝐴, 𝐵), how to efficiently calculate the 
probability of the observation?

2. Given an observation sequence 𝑥1, 𝑥2,!, 𝑥𝑛 and a 
model (𝜋, 𝐴, 𝐵), how to efficiently calculate the 
most probable state sequence?

3. How to calculate (𝜋, 𝐴, 𝐵) from observations?

48

[Rabiner 1999]
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences

50



• Input:
– A hidden Markov model (𝜋, 𝐴, 𝐵)
– An observation sequence 𝐱 = (𝑥1, 𝑥2,!, 𝑥𝑛)

• Output: A state sequence 𝐲 = (y!, y", ⋯ , 𝑦#) that 
corresponds to argmax

4
𝑃(𝐲 ∣ 𝐱, 𝜋, 𝐴, 𝐵)

– Maximum a posteriori inference (MAP inference)

• Computationally: combinatorial optimization 

Most likely state sequence

51
Some slides based on Noah Smith’s lectures



MAP inference

• We want to find argmax
*

𝑃(𝐲 ∣ 𝐱, 𝜋, 𝐴, 𝐵)

• We have defined

𝑃 𝑥!, 𝑥", ⋯ , 𝑥#, 𝑦!, 𝑦", ⋯ , 𝑦# = 𝑃 𝑦! 0
$%!

#&!

𝑃(𝑦$'! ∣ 𝑦$)0
$%!

#

𝑃 𝑥$ ∣ 𝑦$

• But, 𝑃 𝐲 𝐱, 𝜋, 𝐴, 𝐵 ∝ 𝑃(𝐱, 𝐲 ∣ 𝜋, 𝐴, 𝐵)
– And we don’t care about 𝑃(𝐱) we are maximizing over 𝐲

• That is 
argmax

*
𝑃(𝐲 ∣ 𝐱, 𝜋, 𝐴, 𝐵) = argmax

*
𝑃(𝐱, 𝐲 ∣ 𝜋, 𝐴, 𝐵)
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How many possible sequences? 

The Fed raises interest rates

Determiner Verb Verb Verb Verb

Noun Noun Noun Noun

1 2 2 2 2

53

In this simple case, 1×2×2×2×2 = 16 possible sequences exist

Suppose each word allows only the following tags



How many possible sequences?

54

x1 x2 … xn

s1 s1 … s1
s2 s2 s2
s3 s2 s3
. . .
. . .

sK sK sK

Suppose each observation allows any of the 
following k states

Observations

Output: One state per observation yi = sj
Kn possible sequences to consider for argmax

𝐲
𝑃(𝐲 ∣ 𝐱, 𝜋, 𝐴, 𝐵)



Naïve approaches

1. Try out every sequence
– Score the sequence 𝐲 as 𝑃(𝐲 ∣ 𝐱, 𝜋, 𝐴, 𝐵)
– Return the highest scoring one
– Correct, but slow, O(Kn)

2. Greedy search
– Construct the output left to right
– For each i, elect the best yi using yi-1 and xi

– Incorrect but fast, O(n)
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Solution: Use the independence assumptions

Take advantage of the first order Markov assumption

The state for any observation is only influenced by the 
previous state, the next state and the observation itself

Given the adjacent labels, the others do not matter

Suggests a recursive algorithm
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Deriving the recursive algorithm

57

y2 y3y1 yn

x2 x3x1 xn

…

What we want: An assignment to all 
the 𝑦"’s that maximizes this product



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…



Deriving the recursive algorithm
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Initial probability

y2 y3y1 yn

x2 x3x1 xn

…



Deriving the recursive algorithm

60

Emission probabilities Initial probability

y2 y3y1 yn

x2 x3x1 xn

…



Deriving the recursive algorithm
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Transition probabilities Emission probabilities Initial probability

y2 y3y1 yn

x2 x3x1 xn

…



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…

The only terms that depend on y1



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…

Abstract away the score for all 
decisions till here into score1



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…

Only terms that depend on y2



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…

Abstract away the score for all decisions till here into score



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…

Abstract away the score for all decisions till here into score



Deriving the recursive algorithm
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y2 y3y1 yn

x2 x3x1 xn

…

Abstract away the score for all decisions till here into score



Deriving the recursive algorithm
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Viterbi algorithm

1. Initial: For each state s, calculate
𝑠𝑐𝑜𝑟𝑒! 𝑠 = 𝑃 𝑠 𝑃 𝑥! 𝑠 = 𝜋"𝐵#!,"

2. Recurrence: For i = 2 to n, for every state s, calculate
𝑠𝑐𝑜𝑟𝑒% 𝑠 = max

&"#!
𝑃 𝑠 𝑦%'! 𝑃 𝑥% 𝑠 𝑠𝑐𝑜𝑟𝑒%'!(𝑦%'!)

= max
&"#!

𝐴&"#!,% 𝐵",#"𝑠𝑐𝑜𝑟𝑒%'!(𝑦%'!)

3. At the final state: calculate
max
&"#!

𝑃 𝑦, 𝑥 𝜋, 𝐴, 𝐵 = max
"
𝑠𝑐𝑜𝑟𝑒((𝑠)

71

Max-product algorithm for first order sequences



Viterbi algorithm

1. Initial: For each state s, calculate
𝑠𝑐𝑜𝑟𝑒! 𝑠 = 𝑃 𝑠 𝑃 𝑥! 𝑠 = 𝜋"𝐵#!,"

2. Recurrence: For i = 2 to n, for every state s, calculate
𝑠𝑐𝑜𝑟𝑒% 𝑠 = max

&"#!
𝑃 𝑠 𝑦%'! 𝑃 𝑥% 𝑠 𝑠𝑐𝑜𝑟𝑒%'!(𝑦%'!)

= max
&"#!

𝐴&"#!,% 𝐵",#"𝑠𝑐𝑜𝑟𝑒%'!(𝑦%'!)

3. At the final state: calculate
max
&"#!

𝑃 𝑦, 𝑥 𝜋, 𝐴, 𝐵 = max
"
𝑠𝑐𝑜𝑟𝑒((𝑠)

72

𝜋: Initial probabilities
𝐴: Transitions
𝐵: EmissionsMax-product algorithm for first order sequences



Viterbi algorithm

1. Initial: For each state s, calculate
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2. Recurrence: For i = 2 to n, for every state s, calculate
𝑠𝑐𝑜𝑟𝑒% 𝑠 = max
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𝑃 𝑦, 𝑥 𝜋, 𝐴, 𝐵 = max
"
𝑠𝑐𝑜𝑟𝑒((𝑠)

73

This only calculates the max. To get final answer (argmax):
• keep track of which state corresponds to the max at each step 
• build the answer using these back pointers

Max-product algorithm for first order sequences

𝜋: Initial probabilities
𝐴: Transitions
𝐵: Emissions



Viterbi algorithm

1. Initial: For each state s, calculate
𝑠𝑐𝑜𝑟𝑒! 𝑠 = 𝑃 𝑠 𝑃 𝑥! 𝑠 = 𝜋"𝐵#!,"

2. Recurrence: For i = 2 to n, for every state s, calculate
𝑠𝑐𝑜𝑟𝑒% 𝑠 = max

&"#!
𝑃 𝑠 𝑦%'! 𝑃 𝑥% 𝑠 𝑠𝑐𝑜𝑟𝑒%'!(𝑦%'!)

= max
&"#!

𝐴&"#!,% 𝐵",#"𝑠𝑐𝑜𝑟𝑒%'!(𝑦%'!)

3. At the final state: calculate
max
&"#!

𝑃 𝑦, 𝑥 𝜋, 𝐴, 𝐵 = max
"
𝑠𝑐𝑜𝑟𝑒((𝑠)
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This only calculates the max. To get final answer (argmax):
• keep track of which state corresponds to the max at each step 
• build the answer using these back pointers

Questions?

Max-product algorithm for first order sequences

𝜋: Initial probabilities
𝐴: Transitions
𝐵: Emissions



General idea

• Dynamic programming
– The best solution for the full problem relies on best 

solution to sub-problems 
– Memoize partial computation

• Examples
– Viterbi algorithm
– Dijkstra’s shortest path algorithm
– …
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Viterbi algorithm as best path
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Goal: To find the highest scoring path in this trellis

Time steps

Different 
labels for 
each step



Viterbi algorithm as best path
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Goal: To find the highest scoring path in this trellis

Time steps

Different 
labels for 
each step



Complexity of inference

• Complexity parameters
– Input sequence length: n
– Number of states: K

• Memory
– Storing the table: nK (scores for all states at each position)

• Runtime
– At each step, go over pairs of states
– O(nK2)
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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Learning HMM parameters

Two possible scenarios
1. We are given a data set D = {<xi, yi>} of sequences labeled 

with states
And we have to learn the parameters of the HMM (¼, A, B)

2. We are given only a collection of sequences D = {xi}
And we have to learn the parameters of the HMM (¼, A, B)

EM algorithm: We will look at this setting in a subsequent lecture 
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Supervised learning with complete data

Unsupervised learning, with incomplete data

Assume that we know the number of states in the HMM
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Learning HMM parameters

Two possible scenarios
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with states
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Learning HMM parameters

Two possible scenarios
1. We are given a data set D = {<xi, yi>} of sequences labeled 

with states
And we have to learn the parameters of the HMM (𝜋, 𝐴, 𝐵)

2. We are given only a collection of sequences D = {xi}
And we have to learn the parameters of the HMM (𝜋, 𝐴, 𝐵)

EM algorithm and its siblings: a subsequent lecture 
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Learning HMM parameters

Two possible scenarios
1. We are given a data set D = {<xi, yi>} of sequences labeled 

with states
And we have to learn the parameters of the HMM (𝜋, 𝐴, 𝐵)

2. We are given only a collection of sequences D = {xi}
And we have to learn the parameters of the HMM (𝜋, 𝐴, 𝐵)

EM algorithm and its siblings: a subsequent lecture 
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Supervised learning with complete data

Unsupervised learning, with incomplete data

Assume that we know the number of states in the HMM



Supervised learning of HMM

We are given a dataset D = {<xi, yi>}
– Each xi is a sequence of observations and yi is a sequence 

of states that correspond to xi

Goal: Learn initial, transition, emission distributions (𝜋, 𝐴, 𝐵)

• How do we learn the parameters of the probability 
distribution?
– The maximum likelihood principle

86

Where have we seen this before?
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Supervised learning of HMM
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Supervised learning of HMM
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Supervised learning of HMM

We are given a dataset D = {<xi, yi>}
– Each xi is a sequence of observations and yi is a sequence 

of states that correspond to xi

Goal: Learn initial, transition, emission distributions (𝜋, 𝐴, 𝐵)

• How do we learn the parameters of the HMM?
– The maximum likelihood principle
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And we know how to write this in terms of the parameters of the HMM



Supervised learning details

(𝜋, 𝐴, 𝐵) can be estimated separately just by counting
– Makes learning simple and fast
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Supervised learning details

(𝜋, 𝐴, 𝐵) can be estimated separately just by counting
– Makes learning simple and fast
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Initial 
probabilities

Number of examples

Number of instances where the 
first state is s
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Supervised learning details

(𝜋, 𝐴, 𝐵) can be estimated separately just by counting
– Makes learning simple and fast
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Initial 
probabilities

Transition 
probabilities

Emission 
probabilities

Exercise: Derive these using 
derivatives of the log 
likelihood. Requires 
Lagrangian multipliers.



Priors and smoothing

• Maximum likelihood estimation works best with lots 
of annotated data
– Never the case

• Priors inject information about the probability 
distributions
– Dirichlet priors for multinomial distributions

• Effectively additive smoothing
– Add small constants to the counts
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Hidden Markov Models summary

• Predicting sequences 
– As many output states as observations

• Markov assumption helps decompose the score

• Several algorithmic questions
– Most likely state
– Learning parameters 

• Supervised, Unsupervised
– Probability of an observation sequence

• Sum over all assignments to states, replace max with sum in Viterbi
– Probability of state for each observation

• Sum over all assignments to all other states
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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