Predicting Sequences: Structured Perceptron

CS 6355: Structured Prediction

Conditional Random Fields summary

- An undirected graphical model
 - Decompose the score over the structure into a collection of factors
 - Each factor assigns a score to assignment of the random variables it is connected to
- Training and prediction
 - Final prediction via argmax w^T ϕ (**x**, **y**)
 - Train by maximum (regularized) likelihood
- Connections to other models
 - Effectively a linear classifier
 - A generalization of logistic regression to structures
 - An conditional variant of a Markov Random Field
 - We will see this soon

Global features

The feature function decomposes over the sequence

$$\phi(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(\mathbf{x}, y_i, y_{i-1})$$

Outline

- Sequence models
- Hidden Markov models
 - Inference with HMM
 - Learning
- Conditional Models and Local Classifiers
- Global models
 - Conditional Random Fields
 - Structured Perceptron for sequences

Consider the HMM:

$$P(\mathbf{x}, \mathbf{y}) = \prod_{i} P(y_i \mid y_{i-1}) P(x_i \mid y_i)$$

Consider the HMM:

Consider the HMM:

$$P(\mathbf{x}, \mathbf{y}) = \prod_{i} P(y_i \mid y_{i-1}) P(x_i \mid y_i)$$

Or equivalently

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

Log joint probability = transition scores + emission scores

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

Log joint probability = transition scores + emission scores

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

Log joint probability = transition scores + emission scores

Let us examine this expression using a carefully defined set of *indicator functions*

$$I_{[z]} = \begin{cases} 1, & z \text{ is true,} \\ 0, & z \text{ is false.} \end{cases}$$

Indicators are functions that map Booleans to 0 or 1

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i \mid y_{i-1}) + \log P(x_i \mid y_i)$$

Log joint probability = transition scores + emission scores

Let us examine this expression using a carefully defined set of *indicator functions*

Equivalent to

$$\sum_{s} \sum_{s'} \log P(s \mid s') \cdot I_{[y_i=s]} \cdot I_{[y_{i-1}=s']}$$

The indicators ensure that only one of the elements of the double summation is non-zero

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i \mid y_{i-1}) + \log P(x_i \mid y_i)$$

Log joint probability = transition scores + emission scores
Let us examine this expression using a carefully defined set of
indicator functions
Equivalent to

$$\sum_{s} \log P(x_i \mid s) \cdot I_{[y_i = s]}$$

The indicators ensure that only one of the elements of the summation is non-zero

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \sum_{s} \sum_{s'} \log P(s \mid s') \cdot I_{[y_i=s]} \cdot I_{[y_{i-1}=s']}$$
$$+ \sum_{i} \sum_{s} \log P(x_i \mid s) \cdot I_{[y_i=s]}$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \sum_{s} \sum_{s'} \log P(s \mid s') \cdot I_{[y_i=s]} \cdot I_{[y_{i-1}=s']}$$
$$+ \sum_{i} \sum_{s} \log P(x_i \mid s) \cdot I_{[y_i=s]}$$
$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{s} \sum_{s'} \log P(s \mid s') \sum_{i} I_{[y_i=s]} I_{[y_{i-1}=s']}$$
$$+ \sum_{s} \log P(x_i \mid s) \sum_{i} I_{[y_i=s]}$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

Let us examine this expression using a carefully defined set of *indicator functions*

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{s} \sum_{s'} \log P(s \mid s') \sum_{i} I_{[y_i=s]} I_{[y_{i-1}=s']}$$
$$+ \sum_{s} \log P(x_i \mid s) \sum_{i} I_{[y_i=s]}$$
Number of times there is a transition

there is a transition in the sequence from state s' to state s $Count(s' \rightarrow s)$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{s} \sum_{s'} \log P(s \mid s') \cdot \operatorname{Count}(s' \to s) + \sum_{s} \log P(x_i \mid s) \sum_{i} I_{[y_i = s]}$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{s} \sum_{s'} \log P(s \mid s') \cdot \operatorname{Count}(s' \to s) + \sum_{s} \log P(x_i \mid s) \cdot \operatorname{Count}(s)$$

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{i} \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$$

Let us examine this expression using a carefully defined set of *indicator functions*

$$\log P(\mathbf{x}, \mathbf{y}) = \sum_{s} \sum_{s'} \log P(s \mid s') \cdot \operatorname{Count}(s' \to s) + \sum_{s} \log P(x_i \mid s) \cdot \operatorname{Count}(s)$$

This is a linear function

log P terms are the weights; counts via indicators are features Can be written as $\mathbf{w}^{T} \phi(\mathbf{x}, \mathbf{y})$ and add more features

Transition scores + Emission scores

 $\mathsf{log}\:\mathsf{P}(\mathsf{Det}\to\mathsf{Noun})\times \mathsf{2}$

+ log P(Noun \rightarrow Verb) \times 1 + Emission scores

+ log P(Verb ightarrow Det) imes 1

→ Verb Noun Det Noun Det The dog the homework ate Consider $\log P(\mathbf{y}, \mathbf{x}) = \sum \log P(y_i | y_{i-1}) + \log P(x_i | y_i)$ $\log P(Det \rightarrow Noun)$ $\log P(Noun \rightarrow Verb)$ $\log P(Verb \rightarrow Det)$ $\log P(The \mid Det)$ $\log P(dog \mid Noun)$ $\log P(ate | Verb)$ 1 $\log P(the \mid Det$ log P(homework | Noun) $\phi(\mathbf{x}, \mathbf{y})$: Properties of this **w**: Parameters output and the input of the model

Towards structured Perceptron

1. HMM is a linear classifier

- Can we treat it as any linear classifier for training?
- If so, we could add additional features that are global properties
 - As long as the output can be decomposed for easy inference

Towards structured Perceptron

- 1. HMM is a linear classifier
 - Can we treat it as any linear classifier for training?
 - If so, we could add additional features that are global properties
 - As long as the output can be decomposed for easy inference
- 2. The Viterbi algorithm calculates max $w^{T}\phi(x, y)$

Viterbi only cares about scores to structures (not necessarily normalized)

Towards structured Perceptron

- 1. HMM is a linear classifier
 - Can we treat it as any linear classifier for training?
 - If so, we could add additional features that are global properties
 - As long as the output can be decomposed for easy inference
- 2. The Viterbi algorithm calculates max $w^T \phi(x, y)$ Viterbi only cares about scores to structures (not necessarily normalized)
- 3. We could push the learning algorithm to train for un-normalized scores
 - If we need normalization, we could always normalize by exponentiating and dividing by Z (the partition function)
 - That is, the learning algorithm can effectively just focus on the score of y for a particular x
 - Train a discriminative model instead of the generative one!

Given a training set $D = \{(\mathbf{x}, \mathbf{y})\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. For each training example $(\mathbf{x}, \mathbf{y}) \in D$:

Structured Perceptron update

3. Return w

```
Prediction: \operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})
```

Given a training set $D = \{(\mathbf{x}, \mathbf{y})\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. For each training example $(\mathbf{x}, \mathbf{y}) \in D$:
 - 1. Predict $\mathbf{y'} = \operatorname{argmax}_{\mathbf{y'}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y'})$
 - 2. If $\mathbf{y} \neq \mathbf{y'}$, update $\mathbf{w} \leftarrow \mathbf{w} + r (\phi(\mathbf{x}, \mathbf{y}) \phi(\mathbf{x}, \mathbf{y'}))$
- 3. Return w

Prediction: $\operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

Given a training set $D = \{(\mathbf{x}, \mathbf{y})\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. For each training example $(\mathbf{x}, \mathbf{y}) \in D$:
 - 1. Predict **y'** = argmax_{y'} $\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}, \mathbf{y'})$
 - 2. If $\mathbf{y} \neq \mathbf{y'}$, update $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{r} (\phi(\mathbf{x}, \mathbf{y}) \phi(\mathbf{x}, \mathbf{y'}))$
- 3. Return w

```
Prediction: \operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})
```

Update only on an error. Perceptron is an mistakedriven algorithm. If there is a mistake, promote **y** and demote **y**'

Given a training set $D = \{(\mathbf{x}, \mathbf{y})\}$

1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$

T is a hyperparameter to the algorithm

- 1. For each training example $(\mathbf{x}, \mathbf{y}) \in D$:
 - 1. Predict **y'** = argmax_{y'} $\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}, \mathbf{y'})$
 - 2. If $\mathbf{y} \neq \mathbf{y'}$, update $\mathbf{w} \leftarrow \mathbf{w} + r (\phi(\mathbf{x}, \mathbf{y}) \phi(\mathbf{x}, \mathbf{y'}))$
- 3. Return w

Prediction: $\operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

Given a training set $D = \{(x,y)\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. For each training example $(\mathbf{x}, \mathbf{y}) \in D$:
 - 1. Predict **y'** = argmax_{y'} **w**^T ϕ (**x**, **y'**)
 - 2. If $\mathbf{y} \neq \mathbf{y'}$, update $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{r} (\phi(\mathbf{x}, \mathbf{y}) \phi(\mathbf{x}, \mathbf{y'}))$
- 3. Return w

Prediction: $\operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

In practice, good to shuffle D before the inner loop

Given a training set $D = \{(x,y)\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. For each training example $(\mathbf{x}, \mathbf{y}) \in \mathsf{D}$:

Inference in training loop!

1. Predict $\mathbf{y'}$ = argmax_y, $\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}, \mathbf{y'})$

2. If $\mathbf{y} \neq \mathbf{y'}$, update $\mathbf{w} \leftarrow \mathbf{w} + r (\phi(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{x}, \mathbf{y'}))$

3. Return w

```
Prediction: \operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})
```

Notes on structured perceptron

- Mistake bound for separable data, just like perceptron
- In practice, use averaging for better generalization
 - Initialize **a** = 0
 - After each step, whether there is an update or not, $\mathbf{a} \leftarrow \mathbf{w} + \mathbf{a}$
 - Note, we still check for mistake using w not a
 - Return a at the end instead of w
 Exercise: Optimize this for performance modify a only on errors
- Global update
 - One weight vector for entire sequence
 - Not for each position
 - Same algorithm can be derived via constraint classification
 - Create a binary classification data set and run perceptron

Structured Perceptron with averaging

Given a training set $D = \{(x,y)\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$, $\mathbf{a} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. For each training example $(\mathbf{x}, \mathbf{y}) \in D$:
 - 1. Predict **y'** = argmax_{y'} $\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}, \mathbf{y'})$
 - 2. If $\mathbf{y} \neq \mathbf{y'}$, update $\mathbf{w} \leftarrow \mathbf{w} + r (\phi(\mathbf{x}, \mathbf{y}) \phi(\mathbf{x}, \mathbf{y'}))$
 - 3. Set $\mathbf{a} \leftarrow \mathbf{a} + \mathbf{w}$
- 3. Return a

CRF vs. structured perceptron

Stochastic gradient descent update for CRF

- For a training example
$$(\mathbf{x}_i, \mathbf{y}_i)$$

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha_t \left(\phi(\mathbf{x}_i, \mathbf{y}_i) - E_{\mathbf{y}}[\phi(\mathbf{x}_i, \mathbf{y})] \right)$
Structured perceptron
- For a training example $(\mathbf{x}_i, \mathbf{y}_i)$
 $\mathbf{w} \leftarrow \mathbf{w} + \alpha_t \left(\phi(\mathbf{x}_i, \mathbf{y}_i) - \phi(\mathbf{x}_i, \hat{\mathbf{y}}) \right)$
 $\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{arg max}} \mathbf{w}^T \phi(\mathbf{x}, \mathbf{y})$

Caveat: Adding regularization will change the CRF update, averaging changes the perceptron update

HMM: A generative model, assigns probabilities to sequences

HMM: A generative model, assigns probabilities to sequences

Two roads diverge

HMM: A generative model, assigns probabilities to sequences

Two roads diverge

- Hidden Markov Models are actually just linear classifiers
- Don't really care whether we are predicting probabilities. We are assigning scores to a full output for a given input (like multiclass)
- Generalize algorithms for linear classifiers. Sophisticated models that can use arbitrary features
- Structured Perceptron Structured SVM

HMM: A generative model, assigns probabilities to sequences

Two roads diverge

- Hidden Markov Models are actually just linear classifiers
- Don't really care whether we are predicting probabilities. We are assigning scores to a full output for a given input (like multiclass)
- Generalize algorithms for linear classifiers. Sophisticated models that can use arbitrary features
- Structured Perceptron Structured SVM

- Model probabilities via exponential functions. Gives us the log-linear representation
- Log-probabilities for sequences for a given input
- Learn by maximizing likelihood.
 Sophisticated models that can use arbitrary features
- Conditional Random field

HMM: A generative model, assigns probabilities to sequences

Two roads diverge

models

- Hidden Markov Models are actually just linear classifiers
- Don't really care whether we are predicting probabilities. We are assigning scores to a full output for a given i given input (like multiclass)
- Model probabilities via exponential functions. Gives us the log-linear representation
 - Log-probabilities for sequences for a given input

- Generalize algorithms for linear classifiers. Sophisticated models that can use arbitrary features
- Structured Perceptron Structured SVM

- Learn by maximizing likelihood.
 Sophisticated models that can use arbitrary features
- Conditional Random field

HMM: A generative model, assigns probabilities to sequences

Two roads diverge

- Hidden Markov Models are actually just linear classifiers
- Don't really care whether we are predicting probabilities. We are assigning scores to a full output for a given i given input (like multiclass)
- Model probabilities via exponential functions. Gives us the log-linear representation
 - Log-probabilities for sequences for a given input

- Generalize algorithms for linear classifiers. Sophisticated models that can use arbitrary features
- Structured Perceptron Structured SVM

- Learn by maximizing likelihood.
 Sophisticated models that can use arbitrary features
 - Conditional Random field

Applicable beyond sequences

Eventually, similar objective minimized with different loss functions

HMM: A generative model, assigns probabilities to sequences

Two roads diverge

Hidden Markov Models are actually Model probabilities via exponential ۲ functions. Gives us the log-linear just linear classifiers representation Don't really care whether we are ۲ predicting probabilities. We are Log-probabilities for sequences for a assigning scores to a full output for a given input given input (like multiclass) Discriminative/Conditional models Generalize algorithms for linear Learn by maximizing likelihood. ۲ Sophisticated models that can use classifiers. Sophisticated models that arbitrary features can use arbitrary features **Conditional Random field** Structured Perceptron ۲ Structured SVM Applicable beyond sequences Coming Eventually, similar objective minimized with different loss functions soon...

Sequence models: Summary

- Goal: Predict an output sequence given input sequence
- Hidden Markov Model
- Inference
 - Predict via Viterbi algorithm
- Conditional models/discriminative models
 - Local approaches (no inference during training)
 - MEMM, conditional Markov model
 - Global approaches (inference during training)
 - CRF, structured perceptron
- To think
 - What are the *parts* in a sequence model?
 - How is each model scoring these parts?

Prediction is not always tractable for general structures

Same dichotomy for more general structures