
CS	6355:	Structured	Prediction

Predicting	Sequences:
Structured	Perceptron

1



Conditional	Random	Fields	summary

• An	undirected	graphical	model
– Decompose	the	score	over	the	structure	into	a	collection	of	factors
– Each	factor	assigns	a	score	to	assignment	of	the	random	variables	it	is	

connected	to

• Training	and	prediction
– Final	prediction	via	argmax wTÁ(x,	y)
– Train	by	maximum	(regularized)	likelihood

• Connections	to	other	models
– Effectively	a	linear	classifier
– A	generalization	of	logistic	regression	to	structures
– An	conditional	variant	of	a	Markov	Random	Field

• We	will	see	this	soon

2



Global features

The	feature	function	decomposes	over	the	sequence

3

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦+, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



Outline

• Sequence	models

• Hidden	Markov	models

– Inference	with	HMM
– Learning

• Conditional	Models	and	Local	Classifiers

• Global	models
– Conditional	Random	Fields

– Structured	Perceptron	for	sequences

4



HMM	is	also	a	linear	classifier
Consider	the	HMM:	

𝑃 𝐱, 𝐲 =2𝑃 𝑦3 𝑦34+ 𝑃 𝑥3 𝑦3

�

3

5



HMM	is	also	a	linear	classifier
Consider	the	HMM:	

𝑃 𝐱, 𝐲 =2𝑃 𝑦3 𝑦34+ 𝑃 𝑥3 𝑦3

�

3

6

EmissionsTransitions



HMM	is	also	a	linear	classifier
Consider	the	HMM:	

𝑃 𝐱, 𝐲 =2𝑃 𝑦3 𝑦34+ 𝑃 𝑥3 𝑦3

�

3
Or	equivalently

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

7

Log	joint	probability	=	transition	scores	+	emission	scores



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

8

Log	joint	probability	=	transition	scores	+	emission	scores



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

𝐼 ? = @1,	 𝑧	is	true,
0, 𝑧	is	false.

9

Log	joint	probability	=	transition	scores	+	emission	scores

Indicators	are	functions	that	map	Booleans	to	0	or	1



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

::log𝑃 𝑠 𝑠L ⋅ 𝐼 NOPQ ⋅
�

QR

�

Q

𝐼[NOTUVWR]

10

Log	joint	probability	=	transition	scores	+	emission	scores

The	indicators	ensure	that	only	
one	of	the	elements	of	the	
double	summation	is	non-zero

Equivalent	to	



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

:log𝑃 𝑥3 𝑠 ⋅ 𝐼 NOPQ

�

Q

11

Log	joint	probability	=	transition	scores	+	emission	scores

The	indicators	ensure	that	only	
one	of	the	elements	of	the	
summation	is	non-zero

Equivalent	to	



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =:::log𝑃 𝑠 𝑠L ⋅ 𝐼 NOPQ ⋅
�

QR

�

Q

𝐼[NOTUVWR]	
�

3

												

+::log𝑃 𝑥3 𝑠 ⋅ 𝐼 NOPQ

�

Q

�

3

	

12



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =:::log𝑃 𝑠 𝑠L ⋅ 𝐼 NOPQ ⋅
�

QR

�

Q

𝐼[NOTUVWR]	
�

3

												

+::log𝑃 𝑥3 𝑠 ⋅ 𝐼 NOPQ

�

Q

�

3

	

log 𝑃 𝐱, 𝐲 =::log𝑃(𝑠 ∣ 𝑠L):𝐼 NOPQ

�

3

�

QR
𝐼[NOTUVWR]	

�

Q

												

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q

13



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L :𝐼 NOPQ

�

3

�

QR
𝐼[NOTUVWR]	

�

Q

												

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q

14

Number	of	times	
there	is	a	transition	in	
the	sequence	from	
state	𝑠’ to	state	𝑠

Count(𝑠L → 𝑠)



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L ⋅ Count(𝑠L → 𝑠)
�

QR

�

Q

											

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q

15



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L ⋅ Count(𝑠L → 𝑠)
�

QR

�

Q

											

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q

16

Number	of	times	state	
𝑠 occurs	in	the	
sequence:	Count(𝑠)



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L ⋅ Count(𝑠L → 𝑠)
�

QR

�

Q

											

+:log𝑃 𝑥3 𝑠
�

Q

⋅ Count 𝑠

17



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L ⋅ Count(𝑠L → 𝑠)
�

QR

�

Q

											

+:log𝑃 𝑥3 𝑠
�

Q

⋅ Count 𝑠

18

This	is	a	linear	function
log	P	terms	are	the	weights;	counts	via	indicators	are	features
Can	be	written	as	wTÁ(x,	y)	and	add	more	features



HMM	is	a	linear	classifier:	An	example

19

The ate thedog homework

Det Verb DetNoun Noun



HMM	is	a	linear	classifier:	An	example

20

The ate thedog homework

Det Verb DetNoun Noun

Consider



HMM	is	a	linear	classifier:	An	example

21

The ate thedog homework

Det Verb DetNoun Noun

+	

Consider

Transition	scores Emission	scores



HMM	is	a	linear	classifier:	An	example

22

The ate thedog homework

Det Verb DetNoun Noun

log	P(Det! Noun)	£ 2

+	log	P(Noun	! Verb) £ 1

+	log	P(Verb	! Det) £ 1

+	

Consider

Emission	scores



HMM	is	a	linear	classifier:	An	example

23

The ate thedog homework

Det Verb DetNoun Noun

log	P(Det! Noun)	£ 2

+	log	P(Noun	! Verb) £ 1

+	log	P(Verb	! Det) £ 1

log	P(The	|	Det) £ 1

+	log	P(dog|	Noun) £ 1

+	log	P(ate|	Verb) £ 1

+	log	P(the|	Det) £ 1

+	log	P(homework|	Noun) £ 1

+	

Consider



HMM	is	a	linear	classifier:	An	example

24

The ate thedog homework

Det Verb DetNoun Noun

log	P(Det! Noun)	£ 2

+	log	P(Noun	! Verb) £ 1

+	log	P(Verb	! Det) £ 1

log	P(The	|	Det) £ 1

+	log	P(dog|	Noun) £ 1

+	log	P(ate|	Verb) £ 1

+	log	P(the|	Det) £ 1

+	log	P(homework|	Noun) £ 1

+	

w:	Parameters	
of	the	model

Consider



HMM	is	a	linear	classifier:	An	example

25

The ate thedog homework

Det Verb DetNoun Noun

log	P(Det! Noun)	£ 2

+	log	P(Noun	! Verb) £ 1

+	log	P(Verb	! Det) £ 1

log	P(The	|	Det) £ 1

+	log	P(dog|	Noun) £ 1

+	log	P(ate|	Verb) £ 1

+	log	P(the|	Det) £ 1

+	log	P(homework|	Noun) £ 1

+	

Á(x,	y):	Properties	of	
this	output	and	the	
input

Consider



HMM	is	a	linear	classifier:	An	example

26

The ate thedog homework

Det Verb DetNoun Noun

Á(x,	y):	Properties	of	this	
output	and	the	inputw:	Parameters	

of	the	model

Consider

log 𝑃(𝐷𝑒𝑡 → 𝑁𝑜𝑢𝑛)
log 𝑃(𝑁𝑜𝑢𝑛 → 𝑉𝑒𝑟𝑏)
log 𝑃(𝑉𝑒𝑟𝑏 → 𝐷𝑒𝑡)
log 𝑃 𝑇ℎ𝑒	 	𝐷𝑒𝑡)	
log 𝑃 𝑑𝑜𝑔	 	𝑁𝑜𝑢𝑛)
log 𝑃 𝑎𝑡𝑒	 	𝑉𝑒𝑟𝑏)	
log 𝑃 𝑡ℎ𝑒	 	𝐷𝑒𝑡

log 𝑃 ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘	 	𝑁𝑜𝑢𝑛)

⋅

2
1
1
1
1
1
1
1



HMM	is	a	linear	classifier:	An	example

27

The ate thedog homework

Det Verb DetNoun Noun

Á(x,	y):	Properties	of	this	
output	and	the	inputw:	Parameters	

of	the	model

log	P(x,	y)	=	A	linear	scoring	
function	=	wTÁ(x,y)

Consider

log 𝑃(𝐷𝑒𝑡 → 𝑁𝑜𝑢𝑛)
log 𝑃(𝑁𝑜𝑢𝑛 → 𝑉𝑒𝑟𝑏)
log 𝑃(𝑉𝑒𝑟𝑏 → 𝐷𝑒𝑡)
log 𝑃 𝑇ℎ𝑒	 	𝐷𝑒𝑡)	
log 𝑃 𝑑𝑜𝑔	 	𝑁𝑜𝑢𝑛)
log 𝑃 𝑎𝑡𝑒	 	𝑉𝑒𝑟𝑏)	
log 𝑃 𝑡ℎ𝑒	 	𝐷𝑒𝑡

log 𝑃 ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘	 	𝑁𝑜𝑢𝑛)

⋅

2
1
1
1
1
1
1
1



Towards	structured	Perceptron

1. HMM	is	a	linear	classifier
– Can	we	treat	it	as	any	linear	classifier	for	training?
– If	so,	we	could	add	additional	features	that	are	global	properties

• As	long	as	the	output	can	be	decomposed	for	easy	inference

2. The	Viterbi	algorithm	calculates	max	wTÁ(x,	y)
Viterbi	only	cares	about	scores	to	structures	(not	necessarily	normalized)

3. We	could	push	the	learning	algorithm	to	train	for	un-normalized	
scores
– If	we	need	normalization,	we	could	always	normalize	by	computing	

exponentiating and	dividing	by	Z
– That	is,	the	learning	algorithm	can	effectively	just	focus	on	the	score	of	y	

for	a	particular	x
– Train	a	discriminative	model!

28



Towards	structured	Perceptron

1. HMM	is	a	linear	classifier
– Can	we	treat	it	as	any	linear	classifier	for	training?
– If	so,	we	could	add	additional	features	that	are	global	properties

• As	long	as	the	output	can	be	decomposed	for	easy	inference

2. The	Viterbi	algorithm	calculates	max	wTÁ(x,	y)
Viterbi	only	cares	about	scores	to	structures	(not	necessarily	normalized)

3. We	could	push	the	learning	algorithm	to	train	for	un-normalized	
scores
– If	we	need	normalization,	we	could	always	normalize	by	computing	

exponentiating and	dividing	by	Z
– That	is,	the	learning	algorithm	can	effectively	just	focus	on	the	score	of	y	

for	a	particular	x
– Train	a	discriminative	model!

29



Towards	structured	Perceptron

1. HMM	is	a	linear	classifier
– Can	we	treat	it	as	any	linear	classifier	for	training?
– If	so,	we	could	add	additional	features	that	are	global	properties

• As	long	as	the	output	can	be	decomposed	for	easy	inference

2. The	Viterbi	algorithm	calculates	max	wTÁ(x,	y)
Viterbi	only	cares	about	scores	to	structures	(not	necessarily	normalized)

3. We	could	push	the	learning	algorithm	to	train	for	un-normalized	
scores
– If	we	need	normalization,	we	could	always	normalize	by	exponentiating

and	dividing	by	Z	(the	partition	function)
– That	is,	the	learning	algorithm	can	effectively	just	focus	on	the	score	of	y	

for	a	particular	x
– Train	a	discriminative	model	instead	of	the	generative	one!

30



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	learningRate (Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

31

Structured	Perceptron	update



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

32



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

33

Update	only	on	an	error.	
Perceptron	is	an	mistake-
driven	algorithm.
If	there	is	a	mistake,	promote	
y and	demote	y’



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

34

T	is	a	hyperparameter to	the	algorithm



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

35

In	practice,	good	to	
shuffle	D	before	the	
inner	loop



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

36

Inference	in	training	loop!



Notes	on	structured	perceptron

• Mistake	bound	for	separable	data,	just	like	perceptron

• In	practice,	use	averaging	for	better	generalization
– Initialize	a =	0
– After	each	step,	whether	there	is	an	update	or	not,	aÃ w +	a

• Note,	we	still	check	for	mistake	using	w not	a
– Return	a	at	the	end	instead	of w	

Exercise:	Optimize	this	for	performance	– modify	a only	on	errors

• Global	update
– One	weight	vector	for	entire	sequence	

• Not	for	each	position
– Same	algorithm	can	be	derived	via	constraint	classification

• Create	a	binary	classification	data	set	and	run	perceptron

37



Structured	Perceptron	with	averaging

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n,	a =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))
3. Set	aÃ a +	w

3. Return	a

38



CRF	vs.	structured	perceptron

Stochastic	gradient	descent	update	for	CRF
– For	a	training	example	(xi,	yi)

Structured	perceptron
– For	a	training	example	(xi,	yi)

39

Caveat:	Adding	regularization	will	change	the	CRF	update,	averaging	changes	
the	perceptron	update

Expectation	vs max



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

40



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

41

Two	roads	diverge



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

• Hidden	Markov	Models	are	actually	
just	linear classifiers

• Don’t	really	care	whether	we	are	
predicting	probabilities.	We	are	
assigning	scores	to	a	full	output	for	a	
given	input	(like	multiclass)

• Generalize	algorithms	for	linear	
classifiers.	Sophisticated	models	that	
can	use	arbitrary	features

• Structured	Perceptron
Structured	SVM

42

Two	roads	diverge



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

• Hidden	Markov	Models	are	actually	
just	linear classifiers

• Don’t	really	care	whether	we	are	
predicting	probabilities.	We	are	
assigning	scores	to	a	full	output	for	a	
given	input	(like	multiclass)

• Generalize	algorithms	for	linear	
classifiers.	Sophisticated	models	that	
can	use	arbitrary	features

• Structured	Perceptron
Structured	SVM

• Model	probabilities	via	exponential	
functions.	Gives	us	the	log-linear	
representation

• Log-probabilities	for	sequences	for	a	
given	input

• Learn	by	maximizing	likelihood.	
Sophisticated	models	that	can	use	
arbitrary	features

• Conditional	Random	field

43

Two	roads	diverge



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

• Hidden	Markov	Models	are	actually	
just	linear classifiers

• Don’t	really	care	whether	we	are	
predicting	probabilities.	We	are	
assigning	scores	to	a	full	output	for	a	
given	input	(like	multiclass)

• Generalize	algorithms	for	linear	
classifiers.	Sophisticated	models	that	
can	use	arbitrary	features

• Structured	Perceptron
Structured	SVM

• Model	probabilities	via	exponential	
functions.	Gives	us	the	log-linear	
representation

• Log-probabilities	for	sequences	for	a	
given	input

• Learn	by	maximizing	likelihood.	
Sophisticated	models	that	can	use	
arbitrary	features

• Conditional	Random	field

44

Two	roads	diverge

Discriminative/Conditional	
models



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

• Hidden	Markov	Models	are	actually	
just	linear classifiers

• Don’t	really	care	whether	we	are	
predicting	probabilities.	We	are	
assigning	scores	to	a	full	output	for	a	
given	input	(like	multiclass)

• Generalize	algorithms	for	linear	
classifiers.	Sophisticated	models	that	
can	use	arbitrary	features

• Structured	Perceptron
Structured	SVM

• Model	probabilities	via	exponential	
functions.	Gives	us	the	log-linear	
representation

• Log-probabilities	for	sequences	for	a	
given	input

• Learn	by	maximizing	likelihood.	
Sophisticated	models	that	can	use	
arbitrary	features

• Conditional	Random	field

Applicable	beyond	sequences
Eventually,	similar	objective	minimized	with	different	loss	functions 45

Two	roads	diverge

Discriminative/Conditional	
models



The	lay	of	the	land
HMM:	A	generative	model,	assigns	probabilities	to	sequences

• Hidden	Markov	Models	are	actually	
just	linear classifiers

• Don’t	really	care	whether	we	are	
predicting	probabilities.	We	are	
assigning	scores	to	a	full	output	for	a	
given	input	(like	multiclass)

• Generalize	algorithms	for	linear	
classifiers.	Sophisticated	models	that	
can	use	arbitrary	features

• Structured	Perceptron
Structured	SVM

• Model	probabilities	via	exponential	
functions.	Gives	us	the	log-linear	
representation

• Log-probabilities	for	sequences	for	a	
given	input

• Learn	by	maximizing	likelihood.	
Sophisticated	models	that	can	use	
arbitrary	features

• Conditional	Random	field

Applicable	beyond	sequences
Eventually,	similar	objective	minimized	with	different	loss	functions 46

Two	roads	diverge

Coming	
soon…

Discriminative/Conditional	
models



Sequence	models:	Summary

• Goal:	Predict	an	output	sequence	given	input	sequence

• Hidden	Markov	Model

• Inference
– Predict	via	Viterbi	algorithm

• Conditional	models/discriminative	models
– Local	approaches	(no	inference	during	training)

• MEMM,	conditional	Markov	model
– Global	approaches (inference	during	training)

• CRF,	structured	perceptron

• To	think
– What	are	the	parts	in	a	sequence	model?
– How	is	each	model	scoring	these	parts?

47

Same	dichotomy	for	
more	general	structures

Prediction	is	not	always	tractable	
for	general	structures


