
CS	6355:	Structured	Prediction

Predicting	structures:	Practical	
concerns
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So	far…

• What	are	structures?
– A	graph
– A	collection	of	parts	that	are	scored	jointly
– A	collection	of	interconnected	decisions

• Conditional	models
– We	want	to	convert	some	input	to	an	output
– Model	the	conditional	distribution	of	the	output
– Score	groups	of	inter-connected	variables

• Algorithms	for	learning
– Local	vs.	global	learning
– Different	algorithms

• Inference	algorithms
– Predicting	the	final	output
– Different	algorithms,	tradeoffs
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This	lecture:

• We	want	to	solve	a	task.
• Many	choices	ahead!

What	is	the	graph?

The	best	way	to	learn?

• Modeling	our	problem?
• Identifying	variables?
• Identifying	groups	that	are	

scored	together?	(factors)
• What	are	features?

What	inference	algorithm?



Modeling	your	problem

• Understand	the	problem:	What	should	your	program	produce?
– Is	there	data?	Very	often,	the	answer	is	no.	L

• What	are	the	decisions/random	variables	that	constitute	the	output?

• How	do	they	interact?	Identifying	factors/parts
– Some	interactions	are	natural,	some	are	spurious	(specific	to	your	small	collection	of	data)
– Some	interactions	make	inference	impossible	for	computational	reasons
– What	are	the	feature	representations?

• Learning
– What	are	the	scoring	functions?	
– Should	every	scoring	function	be	jointly	learned?
– Perhaps,	learn	sub-sections	independently	and	put	them	together	with	inference	at	the	end
– Which	learning	algorithm?

• Inference
– What	algorithm?	How	expensive	is	it?
– Exact	or	approximate?
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Example	0:	Named	Entity	Recognition

Goal:	To	identify	persons,	locations	and	organizations	in	
text

Facebook	CEO	Mark		Zuckerberg	announced	new

privacy	features	in	the	conference	in	San			Francisco
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Design	choices:
1. What	are	the	set	of	decisions	the	predictor	needs	to	make?
2. How	do	these	decisions	interact?	Factors?
3. Features?	Factor	potentials/scoring	functions?
4. Learning?	Inference?
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PER LOC ORG NONE

Facebook ✗ ✗ ✓ ✗

Facebook	CEO ✗ ✗ ✗ ✓
Facebook	CEO	Mark ✗ ✗ ✗ ✓
Facebook	CEO	Mark Zuckerberg ✗ ✗ ✗ ✓
…

Mark	Zuckerberg ✓ ✗ ✗ ✗

….

What	are	the	set	of	
decisions	the	predictor	
needs	to	make?

One	option:	Label	
spans	of	text
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PER LOC ORG NONE
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Various	learning	regimes

Various	inference	algorithms
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A	different	modeling	choice:	One	label	per	word

This	modeling	choice	offers	its	own	design	choices
1. How	do	these	decisions	interact?	Factors?
2. Features?
3. Learning?	Inference?



Example	1:	Detecting	objects	and	parts

23[Farhadi,	et	al]

Let’s	discuss	the	choices	we	have:
1. What	are	the	set	of	decisions	the	predictor	needs	to	make?
2. How	do	these	decisions	interact?	Factors?
3. Features?
4. Learning?	Inference?



Example	2:	Information	extraction

Philae	is	a	robotic	European	Space	Agency	lander	that	accompanied	the	Rosetta	
spacecraft	until	its	designated	landing	on	Comet	67P/Churyumov–Gerasimenko (67P),	
more	than	ten	years	after	departing	Earth.	On	12	November	2014,	the	lander	achieved	
the	first-ever	controlled	touchdown	on	a	comet	nucleus.	Its	instruments	are	expected	
to	obtain	the	first	images	from	a	comet's	surface	and	make	the	first	in	situ	analysis	to	
determine	its	composition.	Philae	is	tracked	and	operated	from	the	European	Space	
Operations	Centre	(ESOC)	at	Darmstadt,	Germany.
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How	do	we	model	this	problem?

Touchdown
Lander Philae
Destination Comet 67P
When? 12	November	2014
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How	do	we	model	this	problem?
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Philae Comet 67P

Touchdown

12 November 2014

Lander Dest. When Let’s	discuss	the	choices	we	have:
1. What	are	the	set	of	decisions	the	predictor	

needs	to	make?
2. How	do	these	decisions	interact?	Factors?
3. Features?
4. Learning?	Inference?
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• Understand	the	problem:	What	should	your	program	produce?
– Is	there	data?	Very	often,	the	answer	is	no.	L
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