
Machine	Learning

Kernels	and	the	Kernel	Trick

1

Support	vector	machines

• Training	by	maximizing	margin

• The	SVM	objective

• Solving	the	SVM	optimization	problem

• Support	vectors,	duals	and	kernels

2

Support	vector	machines

• Training	by	maximizing	margin

• The	SVM	objective

• Solving	the	SVM	optimization	problem

• Support	vectors,	duals	and	kernels

3

This	lecture

1. Support	vectors

2. Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

4

This	lecture

1. Support	vectors

2. Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

5

So	far	we	have	seen

• Support	vector	machines

• Hinge	loss	and	optimizing	the	regularized	loss

More	broadly,	different	algorithms	for	learning	linear	
classifiers

6

So	far	we	have	seen

• Support	vector	machines

• Hinge	loss	and	optimizing	the	regularized	loss

More	broadly,	different	algorithms	for	learning	linear	
classifiers

What	about	non-linear	models?	

7

One	way	to	learn	non-linear	models

Explicitly	introduce	non-linearity	into	the	feature	space

8

If	the	true	separator	is	quadratic

One	way	to	learn	non-linear	models

Explicitly	introduce	non-linearity	into	the	feature	space

9

If	the	true	separator	is	quadratic Transform	all	input	points	as

One	way	to	learn	non-linear	models

Explicitly	introduce	non-linearity	into	the	feature	space

10

If	the	true	separator	is	quadratic Transform	all	input	points	as

Now,	we	can	try	to	find	a	weight	vector	in	this	higher	dimensional	space

That	is,	predict	using		wTÁ(x1,	x2)	¸ b

SVM:	Primals and	duals

The	SVM	objective

11

This	is	called	the	primal	form	of	the	objective

This	can	be	converted	to	its	dual	form,	which	will	let	us	
prove	a	very	useful	property

SVM:	Primals and	duals

The	SVM	objective

12

This	is	called	the	primal	form	of	the	objective

This	can	be	converted	to	its	dual	form,	which	will	let	us	
prove	a	very	useful	property

Another	optimization	
problem

Has	the	property	that	
max	Dual	=	min	Primal

Support	vector	machines

Let	w be	the	minimizer	of	the	SVM	problem	for	some	dataset	
with	m	examples:	{(xi,	yi)}
Then,	for	i =	1…m,	there	exist	®i¸ 0	such	that	the	optimum	w	
can	be	written	as

13

Support	vector	machines

Let	w be	the	minimizer	of	the	SVM	problem	for	some	dataset	
with	m	examples:	{(xi,	yi)}
Then,	for	i =	1…m,	there	exist	®i¸ 0	such	that	the	optimum	w	
can	be	written	as

Furthermore,

14

+
+

+
+
+++
+

-
- -
-

-
- -
- -
-

-
-
-
- -
-

-
-

+ -

All	points	outside	the	margin

Support	vector	machines

Let	w be	the	minimizer	of	the	SVM	problem	for	some	dataset	
with	m	examples:	{(xi,	yi)}
Then,	for	i =	1…m,	there	exist	®i¸ 0	such	that	the	optimum	w	
can	be	written	as

Furthermore,

15

+
+

+
+
+++
+

-
- -
-

-
- -
- -
-

-
-
-
- -
-

-
-

+ -

All	points	on	the	wrong	side	of	the	margin

Support	vector	machines

Let	w be	the	minimizer	of	the	SVM	problem	for	some	dataset	
with	m	examples:	{(xi,	yi)}
Then,	for	i =	1…m,	there	exist	®i¸ 0	such	that	the	optimum	w	
can	be	written	as

Furthermore,

16

+
+

+
+
+++
+

-
- -
-

-
- -
- -
-

-
-
-
- -
-

-
-

+ -

All	points	on	the	margin

Support	vectors

The	weight	vector	is	completely	defined	by	training	
examples	whose	®is	are	not	zero

These	examples	are	called	the	support	vectors

17

This	lecture

ü Support	vectors

2. Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

18

Predicting	with	linear	classifiers

• Prediction	=																										and

• That	is,	we	just	showed	that	

– We	only	need	to	compute	dot	products	between	training	
examples	and	the	new	example	x

19

Predicting	with	linear	classifiers

• Prediction	=																										and

• That	is,	we	just	showed	that	

– We	only	need	to	compute	dot	products	between	training	
examples	and	the	new	example	x

20

Predicting	with	linear	classifiers

• Prediction	=																										and

• That	is,	we	just	showed	that	

– We	only	need	to	compute	dot	products	between	training	
examples	and	the	new	example	x

21

Predicting	with	linear	classifiers

• Prediction	=																										and

• That	is,	we	just	showed	that	

– We	only	need	to	compute	dot	products	between	training	
examples	and	the	new	example	x

• This	is	true	even	if	we	map	examples	to	a	high	
dimensional	space

22

Predicting	with	linear	classifiers

• Prediction	=																										and

• That	is,	we	just	showed	that	

– That	is	we	only	need	to	compute	dot	products	between	
training	examples	and	the	new	example	x

• This	is	true	even	if	we	map	examples	to	a	high	
dimensional	space

23

Dot	products	in	high	dimensional	spaces

Let	us	define	a	dot	product	in	the	high	dimensional	
space

So	prediction	with	this	high	dimensional	lifting	map	is	

24

because

Dot	products	in	high	dimensional	spaces

Let	us	define	a	dot	product	in	the	high	dimensional	
space

So	prediction	with	this	high	dimensional	lifting	map	is	

25

because

Dot	products	in	high	dimensional	spaces

Let	us	define	a	dot	product	in	the	high	dimensional	
space

So	prediction	with	this	high	dimensional	lifting	map	is	

26

because

Kernel	based	methods

What	does	this	new	formulation	give	us?
If	we	have	to	compute	Á every	time	anyway,		we	gain	nothing

If	we	can	compute	the	value	of	K	without	explicitly	writing	the	
blown	up	representation,	then	we	will	have	a	computational	
advantage

27

Predict	using

Kernel	based	methods

What	does	this	new	formulation	give	us?
If	we	have	to	compute	Á every	time	anyway,		we	gain	nothing

If	we	can	compute	the	value	of	K	without	explicitly	writing	the	
blown	up	representation,	then	we	will	have	a	computational	
advantage.

28

Predict	using

This	lecture

ü Support	vectors

ü Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

29

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

30

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

31

All	degree	zero	terms

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

32

All	degree	zero	terms All	degree	one	terms

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

33

All	degree	zero	terms All	degree	one	terms All	degree	two	terms

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

and	compute	the	dot	product	A		=	Á(x)TÁ (z)										[takes	time]

34

All	degree	zero	terms All	degree	one	terms All	degree	two	terms

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

and	compute	the	dot	product	A		=	Á(x)TÁ (z)										[takes	time]

• Instead,	in	the	original	space,	compute	

Theorem:	A	=	B	(Coefficients	do	not	really	matter)

35

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

and	compute	the	dot	product	A		=	Á(x)TÁ (z)										[takes	time]

• Instead,	in	the	original	space,	compute	

Theorem:	A	=	B	(Coefficients	do	not	really	matter)

36

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

and	compute	the	dot	product	A		=	Á(x)TÁ (z)										[takes	time]

• Instead,	in	the	original	space,	compute	

Theorem:	A	=	B	(Coefficients	do	not	really	matter)

37

Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

and	compute	the	dot	product	A		=	Á(x)TÁ (z)										[takes	time]

• Instead,	in	the	original	space,	compute	

Claim:	A	=	B	(Coefficients	do	not	really	matter)

38

Example:	Two	dimensions,	quadratic	kernel

39

A		=	Á(x)TÁ (z)	

The	Kernel	Trick

Suppose	we	wish	to	compute	K(x,	z)	= Á(x)TÁ (z)	

Here	Á maps	x and	z	to	a	high	dimensional	space

The	Kernel	Trick:		Save	time/space	by	computing	the	
value	of	K(x,	z)	by	performing	operations	in	the	original	
space	(without	a	feature	transformation!)

40

Computing	dot	products	efficiently

Kernel	Trick: You	want	to	work	with	degree	2	polynomial	features,	Á(x).	Then,	
your	dot	product	will	be	operate	using	vectors	in	a	space	of	dimensionality	
n(n+1)/2.	

The	kernel	trick	allows	you	to	save	time/space	and	compute	dot	products	in	
an	n	dimensional	space.

• Can	we	use	any	function	K(.,.)?	
– No!	A	function	K(x,z)	is	a	valid	kernel	if	it	corresponds	to	an	inner	product	in	

some	(perhaps	infinite	dimensional)	feature	space.	

• General	condition: construct	the	Gram	matrix	{K(xi ,zj)};	check	that	it’s	
positive	semi	definite

41

(Not	just	for	degree	2	polynomials)

This	lecture

ü Support	vectors

ü Kernels

ü The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

42

Which	functions	are	kernels?

Kernel	Trick: You	want	to	work	with	degree	2	polynomial	features,	Á(x).	Then,	
your	dot	product	will	be	operate	using	vectors	in	a	space	of	dimensionality	
n(n+1)/2.	

The	kernel	trick	allows	you	to	save	time/space	and	compute	dot	products	in	
an	n	dimensional	space.

• Can	we	use	any	function	K(.,.)?	
– No!	A	function	K(x,z)	is	a	valid	kernel	if	it	corresponds	to	an	inner	product	in	

some	(perhaps	infinite	dimensional)	feature	space.	

• General	condition: construct	the	Gram	matrix	{K(xi ,zj)};	check	that	it’s	
positive	semi	definite

43

(Not	just	for	degree	2	polynomials)

Which	functions	are	kernels?

Kernel	Trick: You	want	to	work	with	degree	2	polynomial	features,	Á(x).	Then,	
your	dot	product	will	be	operate	using	vectors	in	a	space	of	dimensionality	
n(n+1)/2.	

The	kernel	trick	allows	you	to	save	time/space	and	compute	dot	products	in	
an	n	dimensional	space.

• Can	we	use	any	function	K(.,.)?	
– No!	A	function	K(x,z)	is	a	valid	kernel	if	it	corresponds	to	an	inner	product	in	

some	(perhaps	infinite	dimensional)	feature	space.	

• General	condition: construct	the	Gram	matrix	{K(xi ,zj)};	check	that	it’s	
positive	semi	definite

44

(Not	just	for	degree	2	polynomials)

Which	functions	are	kernels?

Kernel	Trick: You	want	to	work	with	degree	2	polynomial	features,	Á(x).	Then,	
your	dot	product	will	be	operate	using	vectors	in	a	space	of	dimensionality	
n(n+1)/2.	

The	kernel	trick	allows	you	to	save	time/space	and	compute	dot	products	in	
an	n	dimensional	space.

• Can	we	use	any	function	K(.,.)?	
– No!	A	function	K(x,z)	is	a	valid	kernel	if	it	corresponds	to	an	inner	product	in	

some	(perhaps	infinite	dimensional)	feature	space.	

• General	condition: construct	the	Gram	matrix	{K(xi ,zj)};	check	that	it’s	
positive	semi	definite

45

(Not	just	for	degree	2	polynomials)

Reminder:	Positive	semi-definite	matrices

A	symmetric	matrix	M	is	positive	semi-definite	if	it	is
– For	any	vector	non-zero	z,	we	have	zTMz¸ 0

(A	useful	property	characterizing	many	interesting	mathematical	objects)

46

The	Kernel	Matrix

• The	Gram	matrix	of	a	set	of	n	vectors	S	=	{x1…xn}	is	the	n×n
matrix	G with	Gij =	xiTxj
– The	kernel	matrix	is	the	Gram	matrix	of	{φ(x1),	…,φ(xn)}	
– (size	depends	on	the	#	of	examples,	not	dimensionality)	

• Showing	that	a	function	K	is	a	valid	kernel
– Direct	approach:	If	you	have	the	φ(xi),	you	have	the	Gram	matrix	(and	it’s	easy	to	

see	that	it	will	be	positive	semi-definite).	Why?

– Indirect:	If	you	have	the	Kernel,	write	down	the	Kernel	matrix	Kij,	and	show	that	it	is	a	
legitimate	kernel,	without	an	explicit	construction	of	φ(xi)

47

The	Kernel	Matrix

• The	Gram	matrix	of	a	set	of	n	vectors	S	=	{x1…xn}	is	the	n×n
matrix	G with	Gij =	xiTxj
– The	kernel	matrix	is	the	Gram	matrix	of	{φ(x1),	…,φ(xn)}	
– (size	depends	on	the	#	of	examples,	not	dimensionality)	

• Showing	that	a	function	K	is	a	valid	kernel
– Direct	approach:	If	you	have	the	φ(xi),	you	have	the	Gram	matrix	(and	it’s	easy	to	

see	that	it	will	be	positive	semi-definite).	Why?

– Indirect:	If	you	have	the	Kernel,	write	down	the	Kernel	matrix	Kij,	and	show	that	it	is	a	
legitimate	kernel,	without	an	explicit	construction	of	φ(xi)

48

Mercer’s	condition

Let	K(x,	z)	be	a	function	that	maps	two	n	dimensional	
vectors	to	a	real	number

K	is	a	valid	kernel	if	for	every	finite	set	{x1,	x2,	! },	for	
any	choice	of	real	valued	c1,	c2,	!,	we	have	

49

Polynomial	kernels

• Linear	kernel:	k(x,	z)	=	xTz

• Polynomial	kernel	of	degree	d:	k(x,	z)	=	(xTz)d
– only	dth-order	interactions

• Polynomial	kernel	up	to	degree	d:	k(x,	z)	=	(xTz +	c)d
(c>0)
– all	interactions	of	order	d	or	lower

50

Gaussian	Kernel	
(or	the	radial	basis	function	kernel)

– (x	−	z)2:	squared	Euclidean	distance	between	x and	z	
– c	=	σ2:	a	free	parameter	
– very	small	c:	K	≈	identity	matrix		(every	item	is	different)	
– very	large	c:	 K	≈	unit	matrix		(all	items	are	the	same)

– k(x,	z)	≈	1	when	x,	z	close
– k(x,	z)	≈	0	when	x,	z	dissimilar	

51

Gaussian	Kernel	
(or	the	radial	basis	function	kernel)

– (x	−	z)2:	squared	Euclidean	distance	between	x and	z	
– c	=	σ2:	a	free	parameter	
– very	small	c:	K	≈	identity	matrix		(every	item	is	different)	
– very	large	c:	 K	≈	unit	matrix		(all	items	are	the	same)

– k(x,	z)	≈	1	when	x,	z	close
– k(x,	z)	≈	0	when	x,	z	dissimilar	

52

Exercises:	
1. Prove	that	this	is	a	kernel.
2. What	is	the	“blown	up”	feature	space	for	this	kernel?

Constructing	New	Kernels	

You	can	construct	new	kernels	k’(x,	x’)	from	existing	ones:

– Multiplying	k(x,	x’)	by	a	constant	c	

ck(x,	x’)

– Multiplying	k(x,	x’)	by	a	function	f	applied	to	x and x’

f(x)k(x,	x’)f(x’)

– Applying	a	polynomial	(with	non-negative	coefficients)	to	k(x,	x’)

P(k(x,	x’))		with	P(z)	=	∑i	aizi and ai≥0

– Exponentiating	k(x,	x’)

exp(k(x,	x’))

53

Constructing	New	Kernels	(2)

• You	can	construct	k’(x,	x’)	from	k1(x,	x’),	k2(x,	x’) by:
– Adding	k1(x,	x’) and	k2(x,	x’):

k1(x,	x’)	+	k2(x,	x’)

– Multiplying	k1(x,	x’)	and	k2(x,	x’):
k1(x,	x’)k2(x,	x’)

• Also:	
– If	φ(x)2 Rm and	 km(z,	z’)	a	valid	kernel	in	Rm,	

k(x,	x’) =	km(φ(x),	φ(x’))	is	also	a	valid	kernel

– If	A is	a	symmetric	positive	semi-definite	matrix,	
k(x,	x’) =	xAx’	is	also	a	valid	kernel

54

Constructing	New	Kernels	(2)

• You	can	construct	k’(x,	x’)	from	k1(x,	x’),	k2(x,	x’) by:
– Adding	k1(x,	x’) and	k2(x,	x’):

k1(x,	x’)	+	k2(x,	x’)

– Multiplying	k1(x,	x’)	and	k2(x,	x’):
k1(x,	x’)k2(x,	x’)

• Also:	
– If	φ(x)2 Rm and	 km(z,	z’)	a	valid	kernel	in	Rm,	

k(x,	x’) =	km(φ(x),	φ(x’))	is	also	a	valid	kernel

– If	A is	a	symmetric	positive	semi-definite	matrix,	
k(x,	x’) =	xAx’	is	also	a	valid	kernel

55

Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	

56

This	lecture

ü Support	vectors

ü Kernels

ü The	kernel	trick

ü Properties	of	kernels

5. Another	example	of	the	kernel	trick

57

Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	

58

Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	

59

Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	

60

Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	

61

Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	

62

Exercises

1. Show	that	this	argument	works		for	a	specific	example
– Take	X={x1,	x2,	x3,	x4}
– Á(x) =	The	space	of	all	3n conjunctions	;	|Á(x)|=	81
– Consider	x=(1100),	z=(1101)
– Write	Á(x),	Á(z),	the	representation	of	x,	z in	the	Á space
– Compute	Á(x)TÁ(z)
– Show	that	

K(x,z)	=Á(x)TÁ(z)=	åi Ái(z)	Ái(x)	=	2same(x,z) =	8

2. Try	to	develop	another	kernel,	e.g.,	where	the	space	of	all	
conjunctions	of	size	3	(exactly)

63

Summary:	Kernel	trick

• To	make	the	final	prediction,	we	are	computing	dot	products

• The	kernel	trick	is	a	computational	trick	to	compute	dot	
products	in	higher	dimensional	spaces

• This	is	applicable	not	just	to	SVMs.	The	same	idea	can	be	
extended	to	Perceptron	too:	the	Kernel	Perceptron

• Important:	All	the	bounds	we	have	seen	(eg:	Perceptron	
bound,	etc)	depend	on	the	underlying	dimensionality
– By	moving	to	a	higher	dimensional	space,	we	are	incurring	a	penalty	

on	sample	complexity

64

