
Machine	Learning

Kernels	and	the	Kernel	Trick

1



Support	vector	machines

• Training	by	maximizing	margin

• The	SVM	objective

• Solving	the	SVM	optimization	problem

• Support	vectors,	duals	and	kernels

2



Support	vector	machines

• Training	by	maximizing	margin

• The	SVM	objective

• Solving	the	SVM	optimization	problem

• Support	vectors,	duals	and	kernels

3



This	lecture

1. Support	vectors

2. Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

4



This	lecture

1. Support	vectors

2. Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick

5



So	far	we	have	seen

• Support	vector	machines

• Hinge	loss	and	optimizing	the	regularized	loss

More	broadly,	different	algorithms	for	learning	linear	
classifiers
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So	far	we	have	seen

• Support	vector	machines

• Hinge	loss	and	optimizing	the	regularized	loss

More	broadly,	different	algorithms	for	learning	linear	
classifiers

What	about	non-linear	models?	
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One	way	to	learn	non-linear	models

Explicitly	introduce	non-linearity	into	the	feature	space
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If	the	true	separator	is	quadratic Transform	all	input	points	as

Now,	we	can	try	to	find	a	weight	vector	in	this	higher	dimensional	space

That	is,	predict	using		wTÁ(x1,	x2)	¸ b



SVM:	Primals and	duals

The	SVM	objective
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This	is	called	the	primal	form	of	the	objective

This	can	be	converted	to	its	dual	form,	which	will	let	us	
prove	a	very	useful	property
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The	SVM	objective
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This	is	called	the	primal	form	of	the	objective

This	can	be	converted	to	its	dual	form,	which	will	let	us	
prove	a	very	useful	property

Another	optimization	
problem

Has	the	property	that	
max	Dual	=	min	Primal



Support	vector	machines

Let	w be	the	minimizer	of	the	SVM	problem	for	some	dataset	
with	m	examples:	{(xi,	yi)}
Then,	for	i =	1…m,	there	exist	®i¸ 0	such	that	the	optimum	w	
can	be	written	as
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Support	vectors

The	weight	vector	is	completely	defined	by	training	
examples	whose	®is	are	not	zero

These	examples	are	called	the	support	vectors
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2. Kernels

3. The	kernel	trick

4. Properties	of	kernels

5. Another	example	of	the	kernel	trick
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Predicting	with	linear	classifiers

• Prediction	=																										and

• That	is,	we	just	showed	that	

– We	only	need	to	compute	dot	products	between	training	
examples	and	the	new	example	x
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Dot	products	in	high	dimensional	spaces

Let	us	define	a	dot	product	in	the	high	dimensional	
space

So	prediction	with	this	high	dimensional	lifting	map	is	
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Kernel	based	methods

What	does	this	new	formulation	give	us?
If	we	have	to	compute	Á every	time	anyway,		we	gain	nothing

If	we	can	compute	the	value	of	K	without	explicitly	writing	the	
blown	up	representation,	then	we	will	have	a	computational	
advantage

27
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Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]
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Example:	Polynomial	Kernel

• Given	two	examples	x and	z we	want	to	map	them	to	a	high	dimensional	
space	[for	example, quadratic]

and	compute	the	dot	product	A		=	Á(x)TÁ (z)										[takes	time	]

• Instead,	in	the	original	space,	compute	

Claim:	A	=	B	(Coefficients	do	not	really	matter)
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Example:	Two	dimensions,	quadratic	kernel
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A		=	Á(x)TÁ (z)	



The	Kernel	Trick

Suppose	we	wish	to	compute	K(x,	z)	= Á(x)TÁ (z)	

Here	Á maps	x and	z	to	a	high	dimensional	space

The	Kernel	Trick:		Save	time/space	by	computing	the	
value	of	K(x,	z)	by	performing	operations	in	the	original	
space	(without	a	feature	transformation!)
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Computing	dot	products	efficiently

Kernel	Trick: You	want	to	work	with	degree	2	polynomial	features,	Á(x).	Then,	
your	dot	product	will	be	operate	using	vectors	in	a	space	of	dimensionality	
n(n+1)/2.	

The	kernel	trick	allows	you	to	save	time/space	and	compute	dot	products	in	
an	n	dimensional	space.

• Can	we	use	any	function	K(.,.)?	
– No!	A	function	K(x,z)	is	a	valid	kernel	if	it	corresponds	to	an	inner	product	in	

some	(perhaps	infinite	dimensional)	feature	space.	

• General	condition: construct	the	Gram	matrix	{K(xi ,zj)};	check	that	it’s	
positive	semi	definite

41
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Reminder:	Positive	semi-definite	matrices

A	symmetric	matrix	M	is	positive	semi-definite	if	it	is
– For	any	vector	non-zero	z,	we	have	zTMz¸ 0

(A	useful	property	characterizing	many	interesting	mathematical	objects)
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The	Kernel	Matrix

• The	Gram	matrix	of	a	set	of	n	vectors	S	=	{x1…xn}	is	the	n×n
matrix	G with	Gij =	xiTxj
– The	kernel	matrix	is	the	Gram	matrix	of	{φ(x1),	…,φ(xn)}	
– (size	depends	on	the	#	of	examples,	not	dimensionality)	

• Showing	that	a	function	K	is	a	valid	kernel
– Direct	approach:	If	you	have	the	φ(xi),	you	have	the	Gram	matrix	(and	it’s	easy	to	

see	that	it	will	be	positive	semi-definite).	Why?

– Indirect:	If	you	have	the	Kernel,	write	down	the	Kernel	matrix	Kij,	and	show	that	it	is	a	
legitimate	kernel,	without	an	explicit	construction	of	φ(xi)
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Mercer’s	condition

Let	K(x,	z)	be	a	function	that	maps	two	n	dimensional	
vectors	to	a	real	number

K	is	a	valid	kernel	if	for	every	finite	set	{x1,	x2,	! },	for	
any	choice	of	real	valued	c1,	c2,	!,	we	have	
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Polynomial	kernels

• Linear	kernel:	k(x,	z)	=	xTz

• Polynomial	kernel	of	degree	d:	k(x,	z)	=	(xTz)d
– only	dth-order	interactions

• Polynomial	kernel	up	to	degree	d:	k(x,	z)	=	(xTz +	c)d
(c>0)
– all	interactions	of	order	d	or	lower
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Gaussian	Kernel	
(or	the	radial	basis	function	kernel)

– (x	−	z)2:	squared	Euclidean	distance	between	x and	z	
– c	=	σ2:	a	free	parameter	
– very	small	c:	K	≈	identity	matrix		(every	item	is	different)	
– very	large	c:	 K	≈	unit	matrix		(all	items	are	the	same)

– k(x,	z)	≈	1	when	x,	z	close
– k(x,	z)	≈	0	when	x,	z	dissimilar	
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Exercises:	
1. Prove	that	this	is	a	kernel.
2. What	is	the	“blown	up”	feature	space	for	this	kernel?



Constructing	New	Kernels	

You	can	construct	new	kernels	k’(x,	x’)	from	existing	ones:

– Multiplying	k(x,	x’)	by	a	constant	c	

ck(x,	x’)

– Multiplying	k(x,	x’)	by	a	function	f	applied	to	x and x’

f(x)k(x,	x’)f(x’)

– Applying	a	polynomial	(with	non-negative	coefficients)	to	k(x,	x’)

P(	k(x,	x’)	)		with	P(z)	=	∑i	aizi and ai≥0

– Exponentiating	k(x,	x’)

exp(k(x,	x’))
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Constructing	New	Kernels	(2)

• You	can	construct	k’(x,	x’)	from	k1(x,	x’),	k2(x,	x’) by:
– Adding	k1(x,	x’) and	k2(x,	x’):

k1(x,	x’)	+	k2(x,	x’)

– Multiplying	k1(x,	x’)	and	k2(x,	x’):
k1(x,	x’)k2(x,	x’)

• Also:	
– If	φ(x)2 Rm and	 km(z,	z’)	a	valid	kernel	in	Rm,	

k(x,	x’) =	km(φ(x),	φ(x’))	is	also	a	valid	kernel

– If	A is	a	symmetric	positive	semi-definite	matrix,	
k(x,	x’) =	xAx’	is	also	a	valid	kernel
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Kernel	Trick:	An	example

Let	the	blown	up	feature	space	represent	the	space	of	all	3n
conjunctions.	Then,	

where	same(x,z) is	the	number	of	features	that	have	the	same	
value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	
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value	for	both	x	and	z

Example:	Take	n=3;	x=(001),	z=(011),	we	have	conjunctions	of	size	0,1,2,3
Proof: let	m=same(x,	z);	construct	“surviving”	conjunctions	by	
1. choosing	to	include	one	of	these	k	literals	with	the	right	polarity	in	the	conjunctions,	or
2. choosing	to	not	include	it	at	all.	
Conjunctions	with	literals	outside	this	set	disappear.	
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Exercises

1. Show	that	this	argument	works		for	a	specific	example
– Take	X={x1,	x2,	x3,	x4}
– Á(x) =	The	space	of	all	3n conjunctions	;	|Á(x)|=	81
– Consider	x=(1100),	z=(1101)
– Write	Á(x),	Á(z),	the	representation	of	x,	z in	the	Á space
– Compute	Á(x)TÁ(z)
– Show	that	

K(x,z)	=Á(x)TÁ(z)=	åi Ái(z)	Ái(x)	=	2same(x,z) =	8

2. Try	to	develop	another	kernel,	e.g.,	where	the	space	of	all	
conjunctions	of	size	3	(exactly)
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Summary:	Kernel	trick

• To	make	the	final	prediction,	we	are	computing	dot	products

• The	kernel	trick	is	a	computational	trick	to	compute	dot	
products	in	higher	dimensional	spaces

• This	is	applicable	not	just	to	SVMs.	The	same	idea	can	be	
extended	to	Perceptron	too:	the	Kernel	Perceptron

• Important:	All	the	bounds	we	have	seen	(eg:	Perceptron	
bound,	etc)	depend	on	the	underlying	dimensionality
– By	moving	to	a	higher	dimensional	space,	we	are	incurring	a	penalty	

on	sample	complexity
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