
Machine Learning

Support Vector Machines:
Training with

Stochastic Gradient Descent

1

Support vector machines

• Training by maximizing margin

• The SVM objective

• Solving the SVM optimization problem

• Support vectors, duals and kernels

2

SVM objective function

3

Regularization term:
• Maximize the margin
• Imposes a preference over the

hypothesis space and pushes for
better generalization

• Can be replaced with other
regularization terms which impose
other preferences

Empirical Loss:
• Hinge loss
• Penalizes weight vectors that make

mistakes

• Can be replaced with other loss

functions which impose other
preferences

A hyper-parameter that
controls the tradeoff
between a large margin and
a small hinge-loss

min
𝐰

1
2
𝐰"𝐰+ 𝐶)

#

max 0, 1 − 𝑦#𝐰"𝐱

Outline: Training SVM by optimization

1. Review of convex functions and gradient descent

2. Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

4

Outline: Training SVM by optimization

1. Review of convex functions and gradient descent

2. Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

5

Solving the SVM optimization problem

This function is convex in 𝐰

6

min
𝐰

1
2
𝐰"𝐰+ 𝐶)

#

max 0, 1 − 𝑦#𝐰"𝐱#

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

7

Recall: Convex functions

𝑓

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

8

Recall: Convex functions

𝒖

𝑓 𝒖

𝑓

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

9

Recall: Convex functions

𝒖 𝒗

𝑓(𝒗)

𝑓 𝒖

𝑓

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

10

Recall: Convex functions

𝒖 𝒗

𝑓(𝒗)

𝑓 𝒖

𝑓

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

11

Recall: Convex functions

𝒖 𝒗

𝑓(𝒗)

𝑓 𝒖

𝜆𝒖 + 1 − 𝜆 𝒗

𝑓

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

12

Recall: Convex functions

𝒖 𝒗

𝑓(𝒗)

𝑓 𝒖

𝜆𝒖 + 1 − 𝜆 𝒗

𝑓

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

13

Recall: Convex functions

𝒖 𝒗

𝑓(𝒗)

𝑓 𝒖

𝜆𝒖 + 1 − 𝜆 𝒗

𝑓

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗

𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

14

Recall: Convex functions

𝒖 𝒗

𝑓(𝒗)

𝑓 𝒖

𝜆𝒖 + 1 − 𝜆 𝒗

𝑓

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗

𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

15

Recall: Convex functions

From geometric perspective

Every tangent plane lies below the function

Convex functions

16

Linear functions max is convex

Some ways to show that a function is convex:

1. Using the definition of convexity

2. Showing that the second derivative is
positive (for one dimensional functions)

3. Showing that the second derivative is
positive semi-definite (for vector functions)

Not all functions are convex

17

These are concave

These are neither

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≥ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

Convex functions are convenient

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for every 𝜆 ∈
[0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

In general: Necessary condition for 𝑥 to be a minimum for the function
𝑓 is that the gradient ∇𝑓 𝑥 = 0

For convex functions, this is both necessary and sufficient

18

u v

f(v)

f(u)

This function is convex in w

• This is a quadratic optimization problem because the objective is
quadratic

• Older methods: Used techniques from Quadratic Programming
– Very slow

• No constraints, can use gradient descent
– Still very slow!

Solving the SVM optimization problem

19

min
𝐰

1
2
𝐰"𝐰+ 𝐶)

#

max 0, 1 − 𝑦#𝐰"𝐱#

Gradient descent

General strategy for minimizing
a function 𝐽 𝐰

• Start with an initial guess for
𝐰, say 𝐰+

• Iterate till convergence:
– Compute the gradient of the

gradient of 𝐽 at 𝐰!

– Update 𝐰!	to get 𝐰!"# by
taking a step in the opposite
direction of the gradient

20

J(w)

w
w0

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Gradient descent

General strategy for minimizing
a function 𝐽 𝐰

• Start with an initial guess for
𝐰, say 𝐰+

• Iterate till convergence:
– Compute the gradient of the

gradient of 𝐽 at 𝐰!

– Update 𝐰!	to get 𝐰!"# by
taking a step in the opposite
direction of the gradient

21

J(w)

w
w0w1

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Gradient descent

General strategy for minimizing
a function 𝐽 𝐰

• Start with an initial guess for
𝐰, say 𝐰+

• Iterate till convergence:
– Compute the gradient of the

gradient of 𝐽 at 𝐰!

– Update 𝐰!	to get 𝐰!"# by
taking a step in the opposite
direction of the gradient

22

J(w)

w
w0w1w2

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Gradient descent

General strategy for minimizing
a function 𝐽 𝐰

• Start with an initial guess for
𝐰, say 𝐰+

• Iterate till convergence:
– Compute the gradient of the

gradient of 𝐽 at 𝐰!

– Update 𝐰!	to get 𝐰!"# by
taking a step in the opposite
direction of the gradient

23

J(w)

w
w0w1w2w3

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Gradient descent for SVM

1. Initialize 𝐰&

2. For t = 0, 1, 2, ….
1. Compute gradient of 𝐽 𝐰 at 𝐰,. Call it ∇J 𝐰,-.

2. Update w as follows:
𝐰,-. ← 𝐰, − 𝑟∇𝐽(𝐰,)

24

𝑟: The learning rate .

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2𝐰

"𝐰+ 𝐶+
#

max 0, 1 − 𝑦#𝐰"𝐱#

Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

2. Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

25

Gradient descent for SVM

1. Initialize 𝐰&

2. For t = 0, 1, 2, ….
1. Compute gradient of 𝐽 𝐰 at 𝐰,. Call it ∇J 𝐰,-.

2. Update w as follows:
𝐰,-. ← 𝐰, − 𝑟∇𝐽(𝐰,)

26

r: Called the learning rate

Gradient of the SVM objective requires summing over the
entire training set

Slow, does not really scale

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2𝐰

"𝐰+ 𝐶+
#

max 0, 1 − 𝑦#𝐰"𝐱#

Stochastic gradient descent for SVM
Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1
2. For epoch = 1 … T:

1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

-𝐽 𝐰 = min
𝐰

1
2
𝐰(𝐰+ 𝐶max 0, 1 − 𝑦$𝐰(𝐱$ 	

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

27

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Stochastic gradient descent for SVM
Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1
2. For epoch = 1 … T:

1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

-𝐽 𝐰 = min
𝐰

1
2
𝐰(𝐰+ 𝐶max 0, 1 − 𝑦$𝐰(𝐱$ 	

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

28

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Stochastic gradient descent for SVM
Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1
2. For epoch = 1 … T:

1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

-𝐽 𝐰 = min
𝐰

1
2
𝐰(𝐰+ 𝐶max 0, 1 − 𝑦$𝐰(𝐱$ 	

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

29

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Stochastic gradient descent for SVM
Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1
2. For epoch = 1 … T:

1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

-𝐽 𝐰 = min
𝐰

1
2
𝐰(𝐰+ 𝐶max 0, 1 − 𝑦$𝐰(𝐱$ 	

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

30

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Stochastic gradient descent for SVM
Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1
2. For epoch = 1 … T:

1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

-𝐽 𝐰 = min
𝐰

1
2
𝐰(𝐰+ 𝐶max 0, 1 − 𝑦$𝐰(𝐱$ 	

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

31

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Stochastic gradient descent for SVM

Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1

2. For epoch = 1 … T:
1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

32

This algorithm is guaranteed to converge to the minimum of 𝐽 if 𝛾! is small enough.
Why? The objective 𝐽 𝐰 is a convex function

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#

Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

ü Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

33

Gradient Descent vs SGD

34

Gradient descent

Gradient Descent vs SGD

35

Stochastic Gradient descent

Gradient Descent vs SGD

36

Stochastic Gradient descent

Gradient Descent vs SGD

37

Stochastic Gradient descent

Gradient Descent vs SGD

38

Stochastic Gradient descent

Gradient Descent vs SGD

39

Stochastic Gradient descent

Gradient Descent vs SGD

40

Stochastic Gradient descent

Gradient Descent vs SGD

41

Stochastic Gradient descent

Gradient Descent vs SGD

42

Stochastic Gradient descent

Gradient Descent vs SGD

43

Stochastic Gradient descent

Gradient Descent vs SGD

44

Stochastic Gradient descent

Gradient Descent vs SGD

45

Stochastic Gradient descent

Gradient Descent vs SGD

46

Stochastic Gradient descent

Gradient Descent vs SGD

47

Stochastic Gradient descent

Gradient Descent vs SGD

48

Stochastic Gradient descent

Gradient Descent vs SGD

49

Stochastic Gradient descent

Gradient Descent vs SGD

50

Stochastic Gradient descent

Gradient Descent vs SGD

51

Stochastic Gradient descent

Gradient Descent vs SGD

52

Stochastic Gradient descent

Many more updates than gradient descent, but each
individual update is less computationally expensive

Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

ü Stochastic gradient descent

ü Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

53

Stochastic gradient descent for SVM

Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1

2. For epoch = 1 … T:
1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM
objective at the current 𝐰!%# to be ∇J 𝐰&%#

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w

54

𝐽 𝐰 = min
𝐰

1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱

Hinge loss is not differentiable!

What is the derivative of the hinge loss with respect to w?

55

𝐽 𝐰 = min
𝐰

1
2
𝐰5𝐰+ 𝐶max 0, 1 − 𝑦0𝐰5𝐱0 	

Detour: Sub-gradients

Generalization of gradients to non-differentiable functions
(Remember that every tangent is a hyperplane that lies below
the function for convex functions)

Informally, a sub-tangent at a point is any hyperplane that lies
below the function at the point.
A sub-gradient is the slope of that line

56

Sub-gradients

57
[Example from Boyd]

g1 is a gradient at x1

g2 and g3 is are both
subgradients at x2

f is differentiable at x1
Tangent at this point

Formally, a vector g is a subgradient to f at point x if

Sub-gradients

58
[Example from Boyd]

g1 is a gradient at x1

g2 and g3 is are both
subgradients at x2

f is differentiable at x1
Tangent at this point

Formally, a vector g is a subgradient to f at point x if

Sub-gradients

59
[Example from Boyd]

g1 is a gradient at x1

g2 and g3 is are both
subgradients at x2

f is differentiable at x1
Tangent at this point

Formally, a vector g is a subgradient to f at point x if

Sub-gradient of the SVM objective

60

General strategy: First solve the max and
compute the gradient for each case

Sub-gradient of the SVM objective

61

General strategy: First solve the max and
compute the gradient for each case

Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

ü Stochastic gradient descent

ü Gradient descent vs stochastic gradient descent

ü Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

62

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

63

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

64

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

65

 Update 𝐰 ← 𝐰− 𝛾!∇𝐽

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

66

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

67

𝛾$: learning rate,
many tweaks possible

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

68

𝛾$: learning rate,
many tweaks possible

Important to shuffle examples at
the start of each epoch

Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are “square summable, but not
summable”

• Step sizes 𝛾! are positive
• Sum of squares of step sizes over t = 1 to 1 is not infinite
• Sum of step sizes over t = 1 to 1 is infinity

• Some examples: 𝛾A =
B!

CD"!#$
 or 𝛾A =

B!
CDA

69

Convergence and learning rates

• Number of iterations to get to accuracy within 𝜖

• For strongly convex functions, N examples, d dimensional:
– Gradient descent: 𝑂 𝑁𝑑 ln !

"
	

– Stochastic gradient descent: 𝑂 #
"

• More subtleties involved, but SGD is generally preferable when the
data size is huge

• Recently, many variants that are based on this general strategy
– Examples: Adagrad, momentum, Nesterov’s accelerated gradient, Adam,

RMSProp, etc…

70

Convergence and learning rates

• Number of iterations to get to accuracy within 𝜖

• For strongly convex functions, N examples, d dimensional:
– Gradient descent: 𝑂 𝑁𝑑 ln !

"
	

– Stochastic gradient descent: 𝑂 #
"

• More subtleties involved, but SGD is generally preferable when the
data size is huge

• Recently, many variants that are based on this general strategy
– Examples: Adagrad, momentum, Nesterov’s accelerated gradient, Adam,

RMSProp, etc…

71

Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

ü Stochastic gradient descent

ü Gradient descent vs stochastic gradient descent

ü Sub-derivatives of the hinge loss

ü Stochastic sub-gradient descent for SVM

6. Comparison to perceptron

72

Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1:
 𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else:
 𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰

73

Compare with the Perceptron update:
If 𝑦"𝐰#𝐱" ≤ 0,
 update 𝐰 ← 𝐰+ 𝛾!𝑦"𝐱"

Perceptron vs. SVM

• Perceptron: Stochastic sub-gradient descent for a
different loss
– No regularization though

• SVM optimizes the hinge loss
– With regularization

74

SVM summary from optimization perspective

• Minimize regularized hinge loss

• Solve using stochastic gradient descent
– Very fast, run time does not depend on number of examples

– Compare with Perceptron algorithm: Perceptron does not maximize
margin width
• Perceptron variants can force a margin

– Convergence criterion is an issue; can be too aggressive in the beginning
and get to a reasonably good solution fast; but convergence is slow for
very accurate weight vector

• Other successful optimization algorithms exist
– Eg: Dual coordinate descent, implemented in liblinear

75
Questions?

