Support Vector Machines: Training with Stochastic Gradient Descent

Machine Learning

Support vector machines

- Training by maximizing margin
- The SVM objective
- Solving the SVM optimization problem
- Support vectors, duals and kernels

SVM objective function

Outline: Training SVM by optimization

- 1. Review of convex functions and gradient descent
- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Outline: Training SVM by optimization

1. Review of convex functions and gradient descent

- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Solving the SVM optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

This function is convex in \boldsymbol{w}

A function f is convex if for every u, v in the domain, and for every $\lambda \in [0,1]$ we have

$$f(\lambda \boldsymbol{u} + (1-\lambda)\boldsymbol{v}) \leq \lambda f(\boldsymbol{u}) + (1-\lambda)f(\boldsymbol{v})$$

From geometric perspective

Every tangent plane lies below the function

Convex functions

f(x) = -xLinear functions $f(x_1, x_2) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2}$ $f(x) = x^2$

 $f(x) = \max(0, x)$

max is convex

Some ways to show that a function is convex:

- 1. Using the definition of convexity
- 2. Showing that the second derivative is positive (for one dimensional functions)
- 3. Showing that the second derivative is positive semi-definite (for vector functions)

Not all functions are convex

Convex functions are convenient

A function f is convex if for every u, v in the domain, and for every $\lambda \in [0,1]$ we have

In general: Necessary condition for x to be a minimum for the function f is that the gradient $\nabla f(x) = 0$

For convex functions, this is both necessary and sufficient

Solving the SVM optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

This function is convex in **w**

- This is a quadratic optimization problem because the objective is quadratic
- Older methods: Used techniques from Quadratic Programming

 Very slow
- No constraints, can use *gradient descent*
 - Still very slow!

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for \mathbf{w} , say \mathbf{w}^0
- Iterate till convergence:
 - Compute the gradient of the gradient of I at \mathbf{w}^t
 - Update \mathbf{w}^t to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for \mathbf{w} , say \mathbf{w}^0
- Iterate till convergence:
 - Compute the gradient of the gradient of I at \mathbf{w}^t
 - Update \mathbf{w}^t to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

Gradient descent for SVM

We are trying to minimize

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

- 1. Initialize \mathbf{w}^0
- 2. For t = 0, 1, 2,
 - 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t . Call it $\nabla J(\mathbf{w}^{t+1})$

2. Update w as follows:

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - r \nabla J(\mathbf{w}^t)$$

r: The learning rate .

Outline: Training SVM by optimization

- ✓ Review of convex functions and gradient descent
- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Gradient descent for SVM

We are trying to minimize

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

- 1. Initialize \mathbf{w}^0
- 2. For t = 0, 1, 2,
 - 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t . Call it $\nabla J(\mathbf{w}^{t+1})$

Gradient of the SVM objective requires summing over the entire training set Slow, does not really scale

r: Called the learning rate

$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV^IM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:

$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV^IM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set *S*

$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_i \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$ Stochastic gradient descent for SV^IM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set *S*
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$

$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV^IM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$ $\hat{J}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV^IM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$ $\hat{J}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

3. Update:
$$\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} - \gamma_t \nabla J(\mathbf{w}^{t-1})$$

$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_i \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$ Stochastic gradient descent for SVⁱM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$
 - 3. Update: $\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} \gamma_t \nabla J(\mathbf{w}^{t-1})$

3. Return final **w**

This algorithm is guaranteed to converge to the minimum of J if γ_t is small enough. Why? The objective $J(\mathbf{w})$ is a *convex* function

Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

✓ Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Gradient Descent vs SGD

Gradient descent

Gradient Descent vs SGD

Stochastic Gradient descent

Gradient Descent vs SGD

Stochastic Gradient descent

Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x})$ Stochastic gradient descent for SVM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S

2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the *derivative of the SVM objective* at the current \mathbf{w}^{t-1} to be $\nabla J(\mathbf{w}^{t-1})$

3. Update:
$$\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} - \gamma_t \nabla J(\mathbf{w}^{t-1})$$

3. Return final **w**

Hinge loss is **not** differentiable!

What is the derivative of the hinge loss with respect to w?

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

Detour: Sub-gradients

Generalization of gradients to non-differentiable functions

(Remember that every tangent is a hyperplane that lies below the function for convex functions)

Informally, a sub-tangent at a point is any hyperplane that lies below the function at the point.

A sub-gradient is the slope of that line

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

Sub-gradient of the SVM objective

$$J^{t}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\max\left(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i}\right)$$

General strategy: First solve the max and compute the gradient for each case

Sub-gradient of the SVM objective

$$J^{t}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\max\left(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i}\right)$$

General strategy: First solve the max and compute the gradient for each case

$$\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max\left(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right) = 0\\ \mathbf{w} - C y_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$$

Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- ✓ Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0\\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set $S = \{(\mathbf{x}_{i}, y_{i})\}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$

1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max \left(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i} \right) = 0 \\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set $S = \{ (\mathbf{x}_{i}, y_{i}) \}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0\\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set $S = \{(\mathbf{x}_{i}, y_{i})\}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$:

Update $\mathbf{w} \leftarrow \mathbf{w} - \gamma_t \nabla J$

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0\\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set $S = \{(\mathbf{x}_{i}, y_{i})\}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$: If $y_i \mathbf{w}^T \mathbf{x}_i \leq 1$: $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ else: $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$: If $y_i \mathbf{w}^T \mathbf{x}_i \leq 1$: $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ else: $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$ γ_t : learning rate, many tweaks possible

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$:

f
$$y_i \mathbf{w}^T \mathbf{x}_i \le 1$$
:
 $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$

 γ_t : learning rate, many tweaks possible

Important to shuffle examples at the start of each epoch

else:

$$\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$$

Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are "square summable, but not summable"

- Step sizes γ_t are positive
- Sum of squares of step sizes over t = 1 to 1 is not infinite
- Sum of step sizes over t = 1 to 1 is infinity

• Some examples:
$$\gamma_t = \frac{\gamma_0}{1 + \frac{\gamma_0 t}{C}}$$
 or $\gamma_t = \frac{\gamma_0}{1 + t}$

Convergence and learning rates

- Number of iterations to get to accuracy within ϵ
- For strongly convex functions, N examples, d dimensional:
 - Gradient descent: $O\left(Nd\ln\frac{1}{\epsilon}\right)$
 - Stochastic gradient descent: $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge

Convergence and learning rates

- Number of iterations to get to accuracy within ϵ
- For strongly convex functions, N examples, d dimensional:
 - Gradient descent: $O\left(Nd\ln\frac{1}{\epsilon}\right)$
 - Stochastic gradient descent: $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge
- Recently, many variants that are based on this general strategy
 - Examples: Adagrad, momentum, Nesterov's accelerated gradient, Adam, RMSProp, etc...

Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- ✓ Sub-derivatives of the hinge loss
- ✓ Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron
Stochastic sub-gradient descent for SVM

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$: If $y_i \mathbf{w}^T \mathbf{x}_i \leq 1$: $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ else: $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$

3. Return w

Compare with the Perceptron update: If $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$, update $\mathbf{w} \leftarrow \mathbf{w} + \gamma_t y_i \mathbf{x}_i$

Perceptron vs. SVM

- Perceptron: Stochastic sub-gradient descent for a different loss
 - No regularization though

$$L_{Perceptron}(y, \mathbf{x}, \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$$

- SVM optimizes the hinge loss
 - With regularization

$$L_{Hinge}(y, \mathbf{x}, \mathbf{w}) = \max(0, 1 - y\mathbf{w}^T\mathbf{x})$$

SVM summary from optimization perspective

- Minimize regularized hinge loss
- Solve using stochastic gradient descent
 - Very fast, run time does not depend on number of examples
 - Compare with Perceptron algorithm: Perceptron does not maximize margin width
 - Perceptron variants can force a margin
 - Convergence criterion is an issue; can be too aggressive in the beginning and get to a reasonably good solution fast; but convergence is slow for very accurate weight vector
- Other successful optimization algorithms exist
 - Eg: Dual coordinate descent, implemented in liblinear

Questions?