
Machine Learning

Support Vector Machines: 
Training with 

Stochastic Gradient Descent
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Support vector machines

• Training by maximizing margin

• The SVM objective

• Solving the SVM optimization problem

• Support vectors, duals and kernels
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SVM objective function
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Regularization term: 
• Maximize the margin
• Imposes a preference over the 

hypothesis space and pushes for 
better generalization

• Can be replaced with other 
regularization terms which impose 
other preferences

Empirical Loss: 
• Hinge loss 
• Penalizes weight vectors that make 

mistakes
 
• Can be replaced with other loss 

functions which impose other 
preferences

A hyper-parameter that 
controls the tradeoff 
between a large margin and 
a small hinge-loss

min
𝐰

1
2
𝐰"𝐰+ 𝐶)

#

max 0, 1 − 𝑦#𝐰"𝐱



Outline: Training SVM by optimization

1. Review of convex functions and gradient descent

2. Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron
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Solving the SVM optimization problem

This function is convex in 𝐰
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min
𝐰

1
2
𝐰"𝐰+ 𝐶)

#

max 0, 1 − 𝑦#𝐰"𝐱#



A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for 
every 𝜆 ∈ [0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)
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Recall: Convex functions

From geometric perspective

Every tangent plane lies below the function



Convex functions
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Linear functions max is convex

Some ways to show that a function is convex:

1. Using the definition of convexity

2. Showing that the second derivative is 
positive (for one dimensional functions)

3. Showing that the second derivative is 
positive semi-definite (for vector functions)



Not all functions are convex
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These are concave

These are neither

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≥ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)



Convex functions are convenient 

A function 𝑓 is convex if for every 𝒖, 𝒗 in the domain, and for every 𝜆 ∈
[0,1] we have

𝑓 𝜆𝒖 + 1 − 𝜆 𝒗 ≤ 𝜆𝑓 𝒖 + 1 − 𝜆 𝑓(𝒗)

In general: Necessary condition for 𝑥 to be a minimum for the function 
𝑓 is that the gradient ∇𝑓 𝑥 = 0

For convex functions, this is both necessary and sufficient
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This function is convex in w

• This is a quadratic optimization problem because the objective is 
quadratic

• Older methods: Used techniques from Quadratic Programming
– Very slow

• No constraints, can use gradient descent
– Still very slow!

Solving the SVM optimization problem
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min
𝐰

1
2
𝐰"𝐰+ 𝐶)

#

max 0, 1 − 𝑦#𝐰"𝐱#



Gradient descent

General strategy for minimizing 
a function 𝐽 𝐰

• Start with an initial guess for 
𝐰, say 𝐰+

• Iterate till convergence: 
– Compute the gradient of the 

gradient of 𝐽 at 𝐰!

– Update 𝐰!	to get 𝐰!"# by 
taking a step in the opposite 
direction of the gradient
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J(w)

w
w0

Intuition: The gradient is the direction 
of steepest increase in the function. To 
get to the minimum, go in the opposite 
direction

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2
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#
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J(w)
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Intuition: The gradient is the direction 
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direction

We are trying to minimize
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Gradient descent for SVM

1. Initialize 𝐰&

2. For t = 0, 1, 2, ….
1. Compute gradient of 𝐽 𝐰  at 𝐰,. Call it ∇J 𝐰,-.

2. Update w as follows:
𝐰,-. ← 𝐰, − 𝑟∇𝐽(𝐰,)

24

𝑟: The learning rate . 

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2𝐰

"𝐰+ 𝐶+
#

max 0, 1 − 𝑦#𝐰"𝐱#



Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

2. Stochastic gradient descent

3. Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron
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r: Called the learning rate 

Gradient of the SVM objective requires summing over the 
entire training set

Slow, does not really scale

We are trying to minimize

𝐽 𝐰 = min
𝐰

1
2𝐰

"𝐰+ 𝐶+
#

max 0, 1 − 𝑦#𝐰"𝐱#



Stochastic gradient descent for SVM
Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1
2. For epoch = 1 … T:

1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM 
objective -𝐽 at the current 𝐰!%#.	Call it ∇-𝐽 𝐰&%#

-𝐽 𝐰 = min
𝐰

1
2
𝐰(𝐰+ 𝐶max 0, 1 − 𝑦$𝐰(𝐱$ 	

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w
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Stochastic gradient descent for SVM
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2. For epoch = 1 … T:
1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆
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This algorithm is guaranteed to converge to the minimum of 𝐽 if 𝛾! is small enough.
Why? The objective 𝐽 𝐰  is a convex function

𝐽 𝐰 =
1
2
𝐰"𝐰+ 𝐶+

#

max 0, 1 − 𝑦#𝐰"𝐱#
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Gradient Descent vs SGD
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Gradient descent



Gradient Descent vs SGD
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Gradient Descent vs SGD
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Stochastic Gradient descent

Many more updates than gradient descent, but each 
individual update is less computationally expensive
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Stochastic gradient descent for SVM

Given a training set 𝑆 = (𝐱0, 𝑦0) , 	𝐱 ∈ ℜ1, 𝑦 ∈ {−1,1}
1. Initialize 𝐰+ = 0 ∈ ℜ1

2. For epoch = 1 … T:
1. Pick a random example (𝐱$, 𝑦$)	from the training set 𝑆

2. Treat (𝐱$, 𝑦$)	as a full dataset and take the derivative of the SVM 
objective at the current 𝐰!%# to be ∇J 𝐰&%#

3. Update: 𝐰! ← 𝐰!%# − 𝛾!∇J 𝐰&%#

3. Return final w
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Hinge loss is not differentiable!

What is the derivative of the hinge loss with respect to w?
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𝐽 𝐰 = min
𝐰

1
2
𝐰5𝐰+ 𝐶max 0, 1 − 𝑦0𝐰5𝐱0 	



Detour: Sub-gradients

Generalization of gradients to non-differentiable functions
(Remember that every tangent is a hyperplane that lies below 
the function for convex functions)

Informally, a sub-tangent at a point is any hyperplane that lies 
below the function at the point.
A sub-gradient is the slope of that line
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Sub-gradients

57
[Example from Boyd]

g1 is a gradient at x1

g2 and g3 is are both 
subgradients at x2

f is differentiable at x1
Tangent at this point

Formally, a vector g is a subgradient to f at point x if 
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Sub-gradient of the SVM objective

60

General strategy: First solve the max and 
compute the gradient  for each case



Sub-gradient of the SVM objective
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General strategy: First solve the max and 
compute the gradient  for each case



Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

ü Stochastic gradient descent

ü Gradient descent vs stochastic gradient descent

ü Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron
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Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1: 
   𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else: 
   𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰
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Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1: 
   𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else: 
   𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰
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Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1: 
   𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else: 
   𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰
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        Update 𝐰 ← 𝐰− 𝛾!∇𝐽
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Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1: 
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 else: 
   𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰
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𝛾$: learning rate, 
many tweaks possible
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1. Initialize 𝐰 = 0 ∈ ℜ?
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𝛾$: learning rate, 
many tweaks possible

Important to shuffle examples at 
the start of each epoch



Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are “square summable, but not 
summable”

• Step sizes 𝛾! are positive
• Sum of squares of step sizes over t = 1 to 1 is not infinite
• Sum of step sizes over t = 1 to 1 is infinity

• Some examples: 𝛾A =
B!

CD"!#$
  or 𝛾A =

B!
CDA
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Convergence and learning rates

• Number of iterations to get to accuracy within 𝜖

• For strongly convex functions, N examples, d dimensional:
– Gradient descent: 𝑂 𝑁𝑑 ln !

"
	

– Stochastic gradient descent: 𝑂 #
"

• More subtleties involved, but SGD is generally preferable when the 
data size is huge

• Recently, many variants that are based on this general strategy
– Examples: Adagrad, momentum, Nesterov’s accelerated gradient, Adam, 

RMSProp, etc…
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Outline: Training SVM by optimization

ü Review of convex functions and gradient descent

ü Stochastic gradient descent

ü Gradient descent vs stochastic gradient descent

ü Sub-derivatives of the hinge loss

ü Stochastic sub-gradient descent for SVM

6. Comparison to perceptron
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Stochastic sub-gradient descent for SVM

Given a training set 𝑆 = (𝐱# , 𝑦#) , 	𝐱 ∈ ℜ? , 𝑦 ∈ {−1,1}
1. Initialize 𝐰 = 0 ∈ ℜ?

2. For epoch = 1 … T:
For each training example 𝐱0, 𝑦0 ∈ 𝑆:

 If 𝑦$𝐰(𝐱$ ≤ 1: 
   𝐰 ← 1 − 𝛾! 𝐰+ 𝛾!𝐶𝑦$𝐱$
 else: 
   𝐰 ← 1 − 𝛾! 𝐰

3. Return 𝐰
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Compare with the Perceptron update:
If 𝑦"𝐰#𝐱" ≤ 0, 
       update 𝐰 ← 𝐰+ 𝛾!𝑦"𝐱"



Perceptron vs. SVM

• Perceptron: Stochastic sub-gradient descent for a 
different loss
– No regularization though

• SVM optimizes the hinge loss
– With regularization
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SVM summary from optimization perspective

• Minimize regularized hinge loss

• Solve using stochastic gradient descent
– Very fast, run time does not depend on number of examples

– Compare with Perceptron algorithm: Perceptron does not maximize 
margin width
• Perceptron variants can force a margin

– Convergence criterion is an issue; can be too aggressive in the beginning 
and get to a reasonably good solution fast; but convergence is slow for 
very accurate weight vector

• Other successful optimization algorithms exist
– Eg: Dual coordinate descent, implemented in liblinear
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