## Support Vector Machines: Training with Stochastic Gradient Descent

Machine Learning



# Support vector machines

- Training by maximizing margin
- The SVM objective
- Solving the SVM optimization problem
- Support vectors, duals and kernels

# SVM objective function



# Outline: Training SVM by optimization

- 1. Review of convex functions and gradient descent
- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

# Outline: Training SVM by optimization

1. Review of convex functions and gradient descent

- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

# Solving the SVM optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

This function is convex in  $\boldsymbol{w}$ 

















A function f is convex if for every u, v in the domain, and for every  $\lambda \in [0,1]$  we have

$$f(\lambda \boldsymbol{u} + (1-\lambda)\boldsymbol{v}) \leq \lambda f(\boldsymbol{u}) + (1-\lambda)f(\boldsymbol{v})$$

From geometric perspective

Every tangent plane lies below the function

## **Convex functions**

f(x) = -xLinear functions  $f(x_1, x_2) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2}$   $f(x) = x^2$ 

 $f(x) = \max(0, x)$ 

*max* is convex

Some ways to show that a function is convex:

- 1. Using the definition of convexity
- 2. Showing that the second derivative is positive (for one dimensional functions)
- 3. Showing that the second derivative is positive semi-definite (for vector functions)

# Not all functions are convex





# Convex functions are convenient

A function f is convex if for every u, v in the domain, and for every  $\lambda \in [0,1]$  we have



In general: Necessary condition for x to be a minimum for the function f is that the gradient  $\nabla f(x) = 0$ 

For convex functions, this is both necessary and sufficient

# Solving the SVM optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

This function is convex in **w** 

- This is a quadratic optimization problem because the objective is quadratic
- Older methods: Used techniques from Quadratic Programming

   Very slow
- No constraints, can use *gradient descent* 
  - Still very slow!

# Gradient descent

General strategy for minimizing a function  $J(\mathbf{w})$ 

- Start with an initial guess for  $\mathbf{w}$ , say  $\mathbf{w}^0$
- Iterate till convergence:
  - Compute the gradient of the gradient of I at  $\mathbf{w}^t$
  - Update  $\mathbf{w}^t$  to get  $\mathbf{w}^{t+1}$  by taking a step in the opposite direction of the gradient



# Gradient descent

General strategy for minimizing a function  $J(\mathbf{w})$ 

- Start with an initial guess for  $\mathbf{w}$ , say  $\mathbf{w}^0$
- Iterate till convergence:
  - Compute the gradient of the gradient of I at  $\mathbf{w}^t$
  - Update  $\mathbf{w}^t$  to get  $\mathbf{w}^{t+1}$  by taking a step in the opposite direction of the gradient



# Gradient descent

General strategy for minimizing a function  $J(\mathbf{w})$ 

- Start with an initial guess for w, say w<sup>0</sup>
- Iterate till convergence:
  - Compute the gradient of the gradient of J at w<sup>t</sup>
  - Update w<sup>t</sup> to get w<sup>t+1</sup> by taking a step in the opposite direction of the gradient



# Gradient descent

General strategy for minimizing a function  $J(\mathbf{w})$ 

- Start with an initial guess for w, say w<sup>0</sup>
- Iterate till convergence:
  - Compute the gradient of the gradient of J at w<sup>t</sup>
  - Update w<sup>t</sup> to get w<sup>t+1</sup> by taking a step in the opposite direction of the gradient



# **Gradient descent for SVM**

We are trying to minimize  

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

- 1. Initialize  $\mathbf{w}^0$
- 2. For t = 0, 1, 2, ....
  - 1. Compute gradient of  $J(\mathbf{w})$  at  $\mathbf{w}^t$ . Call it  $\nabla J(\mathbf{w}^{t+1})$

2. Update w as follows:  

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - r \nabla J(\mathbf{w}^t)$$

r: The learning rate .

# Outline: Training SVM by optimization

- ✓ Review of convex functions and gradient descent
- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

# Gradient descent for SVM

We are trying to minimize  

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

- 1. Initialize  $\mathbf{w}^0$
- 2. For t = 0, 1, 2, ....
  - 1. Compute gradient of  $J(\mathbf{w})$  at  $\mathbf{w}^t$ . Call it  $\nabla J(\mathbf{w}^{t+1})$

Gradient of the SVM objective requires summing over the entire training set Slow, does not really scale

*r*: Called the learning rate

#### $J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV<sup>I</sup>M

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:

#### $J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV<sup>I</sup>M

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
  - 1. Pick a random example  $(\mathbf{x}_i, y_i)$  from the training set *S*

#### $J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_i \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$ Stochastic gradient descent for SV<sup>I</sup>M

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
  - 1. Pick a random example  $(\mathbf{x}_i, y_i)$  from the training set *S*
  - 2. Treat  $(\mathbf{x}_i, y_i)$  as a full dataset and take the derivative of the SVM objective  $\hat{J}$  at the current  $\mathbf{w}^{t-1}$ . Call it  $\nabla \hat{J}(\mathbf{w}^{t-1})$

#### $J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV<sup>I</sup>M

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
  - 1. Pick a random example  $(\mathbf{x}_i, y_i)$  from the training set S
  - 2. Treat  $(\mathbf{x}_i, y_i)$  as a full dataset and take the derivative of the SVM objective  $\hat{J}$  at the current  $\mathbf{w}^{t-1}$ . Call it  $\nabla \hat{J}(\mathbf{w}^{t-1})$  $\hat{J}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

#### $J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$ Stochastic gradient descent for SV<sup>I</sup>M

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
  - 1. Pick a random example  $(\mathbf{x}_i, y_i)$  from the training set S
  - 2. Treat  $(\mathbf{x}_i, y_i)$  as a full dataset and take the derivative of the SVM objective  $\hat{J}$  at the current  $\mathbf{w}^{t-1}$ . Call it  $\nabla \hat{J}(\mathbf{w}^{t-1})$  $\hat{J}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

3. Update: 
$$\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} - \gamma_t \nabla J(\mathbf{w}^{t-1})$$

#### $J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_i \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$ Stochastic gradient descent for SV<sup>i</sup>M

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
  - 1. Pick a random example  $(\mathbf{x}_i, y_i)$  from the training set S
  - 2. Treat  $(\mathbf{x}_i, y_i)$  as a full dataset and take the derivative of the SVM objective  $\hat{J}$  at the current  $\mathbf{w}^{t-1}$ . Call it  $\nabla \hat{J}(\mathbf{w}^{t-1})$
  - 3. Update:  $\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} \gamma_t \nabla J(\mathbf{w}^{t-1})$

#### 3. Return final **w**

This algorithm is guaranteed to converge to the minimum of J if  $\gamma_t$  is small enough. Why? The objective  $J(\mathbf{w})$  is a *convex* function

# Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

✓ Stochastic gradient descent

#### 3. Gradient descent vs stochastic gradient descent

- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

#### Gradient Descent vs SGD



Gradient descent

#### Gradient Descent vs SGD



Stochastic Gradient descent

#### Gradient Descent vs SGD



Stochastic Gradient descent


# Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

### $J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \max(0, 1 - y_i \mathbf{w}^T \mathbf{x})$ Stochastic gradient descent for SVM

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
  - 1. Pick a random example  $(\mathbf{x}_i, y_i)$  from the training set S

2. Treat  $(\mathbf{x}_i, y_i)$  as a full dataset and take the *derivative of the SVM objective* at the current  $\mathbf{w}^{t-1}$  to be  $\nabla J(\mathbf{w}^{t-1})$ 

3. Update: 
$$\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} - \gamma_t \nabla J(\mathbf{w}^{t-1})$$

3. Return final **w** 

#### Hinge loss is **not** differentiable!

What is the derivative of the hinge loss with respect to w?

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

## Detour: Sub-gradients

Generalization of gradients to non-differentiable functions

(Remember that every tangent is a hyperplane that lies below the function for convex functions)



Informally, a sub-tangent at a point is any hyperplane that lies below the function at the point.

A sub-gradient is the slope of that line

## Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all  $y$ 



## Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all  $y$ 



## Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all  $y$ 



## Sub-gradient of the SVM objective

$$J^{t}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\max\left(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i}\right)$$

General strategy: First solve the max and compute the gradient for each case

## Sub-gradient of the SVM objective

$$J^{t}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\max\left(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i}\right)$$

General strategy: First solve the max and compute the gradient for each case

$$\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max\left(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right) = 0\\ \mathbf{w} - C y_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$$

# Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- ✓ Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0\\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set  $S = \{(\mathbf{x}_{i}, y_{i})\}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$ 

1. Initialize  $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$ 

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max \left( 0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i} \right) = 0 \\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set  $S = \{ (\mathbf{x}_{i}, y_{i}) \}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0\\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set  $S = \{(\mathbf{x}_{i}, y_{i})\}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example  $(\mathbf{x}_i, y_i) \in S$ :

Update  $\mathbf{w} \leftarrow \mathbf{w} - \gamma_t \nabla J$ 

 $\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0\\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$ Given a training set  $S = \{(\mathbf{x}_{i}, y_{i})\}, \ \mathbf{x} \in \Re^{d}, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \Re^d$
- 2. For epoch = 1 ... T:

For each training example  $(\mathbf{x}_i, y_i) \in S$ : If  $y_i \mathbf{w}^T \mathbf{x}_i \leq 1$ :  $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ else:  $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$ 

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example  $(\mathbf{x}_i, y_i) \in S$ : If  $y_i \mathbf{w}^T \mathbf{x}_i \leq 1$ :  $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ else:  $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$   $\gamma_t$ : learning rate, many tweaks possible

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example  $(\mathbf{x}_i, y_i) \in S$ :

f 
$$y_i \mathbf{w}^T \mathbf{x}_i \le 1$$
:  
 $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ 

 $\gamma_t$ : learning rate, many tweaks possible

Important to shuffle examples at the start of each epoch

else:

$$\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$$

## Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are "square summable, but not summable"

- Step sizes  $\gamma_t$  are positive
- Sum of squares of step sizes over t = 1 to 1 is not infinite
- Sum of step sizes over t = 1 to 1 is infinity

• Some examples: 
$$\gamma_t = \frac{\gamma_0}{1 + \frac{\gamma_0 t}{C}}$$
 or  $\gamma_t = \frac{\gamma_0}{1 + t}$ 

## Convergence and learning rates

- Number of iterations to get to accuracy within  $\epsilon$
- For strongly convex functions, N examples, d dimensional:
  - Gradient descent:  $O\left(Nd\ln\frac{1}{\epsilon}\right)$
  - Stochastic gradient descent:  $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge

## Convergence and learning rates

- Number of iterations to get to accuracy within  $\epsilon$
- For strongly convex functions, N examples, d dimensional:
  - Gradient descent:  $O\left(Nd\ln\frac{1}{\epsilon}\right)$
  - Stochastic gradient descent:  $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge
- Recently, many variants that are based on this general strategy
  - Examples: Adagrad, momentum, Nesterov's accelerated gradient, Adam, RMSProp, etc...

# Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- ✓ Sub-derivatives of the hinge loss
- ✓ Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron
## Stochastic sub-gradient descent for SVM

Given a training set  $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1, 1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \Re^d$
- 2. For epoch = 1 ... T:

For each training example  $(\mathbf{x}_i, y_i) \in S$ : If  $y_i \mathbf{w}^T \mathbf{x}_i \leq 1$ :  $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$ else:  $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$ 

3. Return w

Compare with the Perceptron update: If  $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$ , update  $\mathbf{w} \leftarrow \mathbf{w} + \gamma_t y_i \mathbf{x}_i$ 

## Perceptron vs. SVM

- Perceptron: Stochastic sub-gradient descent for a different loss
  - No regularization though

$$L_{Perceptron}(y, \mathbf{x}, \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$$

- SVM optimizes the hinge loss
  - With regularization

$$L_{Hinge}(y, \mathbf{x}, \mathbf{w}) = \max(0, 1 - y\mathbf{w}^T\mathbf{x})$$

## SVM summary from optimization perspective

- Minimize regularized hinge loss
- Solve using stochastic gradient descent
  - Very fast, run time does not depend on number of examples
  - Compare with Perceptron algorithm: Perceptron does not maximize margin width
    - Perceptron variants can force a margin
  - Convergence criterion is an issue; can be too aggressive in the beginning and get to a reasonably good solution fast; but convergence is slow for very accurate weight vector
- Other successful optimization algorithms exist
  - Eg: Dual coordinate descent, implemented in liblinear

## Questions?