
CS 6355: Structured Prediction

Stochastic Gradient Descent for 
Structures
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Where are we?

• Structural Support Vector Machine
– How it naturally extends multiclass SVM

• Empirical Risk Minimization
– Or: how structural SVM and CRF are solving very similar 

problems

• Training Structural SVM via stochastic gradient descent
– The algorithm and loss augmented inference
– Comparison to Perceptron
– Practical tips
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Training structural SVM

• We want to solve the minimization problem:

min
𝐰

1
2𝐰

"𝐰+ 𝐶)
#

max
𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲# −𝐰"𝜙 𝐱# , 𝐲#

• The function being minimized is convex in 𝐰
– Why?

• Many different algorithms exist
– Let’s look at a gradient based one
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Recall: General gradient descent

To minimize a differentiable convex function g(x)
• Initialize x0 to any value
• Iterate until convergence
– Find gradient of g at xt: rg(xt)
– Update: 𝑥!"# ← 𝑥! − 𝛾!𝛻𝑔(𝑥!)
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Recall: General gradient descent

To minimize a differentiable convex function g(x)
• Initialize x0 to any value
• Iterate until convergence
– Find gradient of g at xt: rg(xt)
– Update: 𝑥!"# ← 𝑥! − 𝛾!𝛻𝑔(𝑥!)

What we know:
g(x0) > g(x1) > g(x2) … 

Guarantee: Will converge to local minimum (with some 
assumptions) 
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Minimizing averages of functions

Suppose the function f we want to minimize is the 
average of differentiable functions

𝑓 𝑥 =
1
𝑛
&
!"#

$

𝑔!(𝑥)
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Initialize x0
Iterate until convergence:

𝑥%&# ← 𝑥% − 𝛾%
1
𝑛
&
!"#

$

𝛻𝑔! 𝑥%

Gradient descent
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Initialize x0
Iterate until convergence:

1. Pick a random 𝑔𝑖 and compute its 
gradient at 𝑥%: 𝛻𝑔! 𝑥%

2. Update: 𝑥%&# ← 𝑥% − 𝛾%𝛻𝑔! 𝑥%

Initialize x0
Iterate until convergence:

𝑥%&# ← 𝑥% − 𝛾%
1
𝑛
&
!"#

$

𝛻𝑔! 𝑥%

Gradient descent Stochastic gradient descent
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Stochastic gradient descent

Suppose the function f we want to minimize is the 
average of differentiable functions

𝑓 𝑥 =
1
𝑛
&
!"#

$

𝑔!(𝑥)

• Initialize x0

• Iterate until convergence
– Pick a random 𝑔𝑖 and compute its gradient at 𝑥!: 𝛻𝑔$(𝑥!)
– Update: 𝑥!"# ← 𝑥! − 𝛾!𝛻𝑔$ 𝑥!
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General idea: Replace the gradient with a noisy estimate



Gradient descent vs SGD
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Gradient descent

Stochastic Gradient descent



Stochastic gradient descent

We want to solve the following optimization problem:

min
𝐰

1
2
𝐰(𝐰+ 𝐶&

!

max
𝐲

𝐰(𝜙 𝐱!, 𝐲 + Δ 𝐲, 𝐲! −𝐰(𝜙 𝐱!, 𝐲!

General SGD strategy: 
Repeat till convergence:
• Pretend our training set has only one example (say xi, yi) 

min
𝐰

1
2𝐰

(𝐰+ 𝐶max
𝐲

𝐰(𝜙 𝐱!, 𝐲 + Δ 𝐲, 𝐲! −𝐰(𝜙 𝐱!, 𝐲!

• Compute gradient of this objective and update 𝐰
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Subgradients

min
𝐰

1
2
𝐰&𝐰+ 𝐶max

𝐲
𝐰&𝜙 𝐱$, 𝐲 + Δ 𝐲, 𝐲$ −𝐰&𝜙 𝐱$, 𝐲$

Not differentiable! What is the gradient?

Answer: Use subgradients

Definition: A vector g is a subgradient of a function f 
(not necessarily convex) at x if
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Subgradients
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[Example from Boyd]

g1 is a gradient at x1

g2 and g3 is are both 
subgradients at x2

f is differentiable at x1
Tangent at this point



Subgradients of max
Consider the function 𝑓 𝑥 = max 𝑓1 𝑥 , 𝑓2 𝑥
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• f1(x) > f2(x), unique subgradient r f1(x)
• f2(x) > f1(x), unique subgradient r f2(x)
• f1(x) = f2(x), subgradients in [r f1(x), r f2(x)]

Strategy: Solve the max first, then compute gradient of whichever 
function is argmax



Stochastic subgradient descent

We want to solve the following optimization problem:

min
𝐰

1
2
𝐰(𝐰+ 𝐶&

!

max
𝐲

𝐰(𝜙 𝐱!, 𝐲 + Δ 𝐲, 𝐲! −𝐰(𝜙 𝐱!, 𝐲!

General SGD strategy: 
Repeat till convergence:
• Pretend our training set has only one example (say xi, yi) 

min
𝐰

1
2𝐰

(𝐰+ 𝐶max
𝐲

𝐰(𝜙 𝐱!, 𝐲 + Δ 𝐲, 𝐲! −𝐰(𝜙 𝐱!, 𝐲!

• Compute subgradient of this objective and update 𝐰
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Subgradient of the structured hinge loss

min
𝐰

1
2
𝐰(𝐰+ 𝐶max

𝐲
𝐰(𝜙 𝐱!, 𝐲 + Δ 𝐲, 𝐲! −𝐰(𝜙 𝐱!, 𝐲!

1. Solve the max. Suppose solution is 𝐲′
– The loss-augmented/loss-sensitive/cost-augmented inference step

2. Compute gradient of
min
𝐰

1
2
𝐰"𝐰+ 𝐶 𝐰"𝜙 𝐱# , 𝐲′ + Δ 𝐲′, 𝐲# −𝐰"𝜙 𝐱# , 𝐲#

3. The subgradient is
𝐰+ 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$
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SGD for structural SVM: The update

• Gradient:𝐰+ 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• At each step, go down the gradient:
𝐰 ← 𝐰− 𝛾! ⋅ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

• Or equivalently
– If y’ = yi: 𝐰 ← (1 − 𝛾!)𝐰

– Otherwise:   
𝐰 ← 1 − 𝛾! 𝐰− 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

24

Even of loss-augmented inference 
gives the true answer, shrink 𝐰. 
(Increase margin!)



SGD for structural SVM: The update

• Gradient:𝐰+ 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• At each step, go down the gradient:
𝐰 ← 𝐰− 𝛾! ⋅ 𝐰 + 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• Or equivalently
– If 𝐲( = 𝐲$: 𝐰 ← (1 − 𝛾!)𝐰

– Otherwise:   
𝐰 ← 1 − 𝛾! 𝐰− 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

25

Even of loss-augmented inference 
gives the true answer, shrink 𝐰. 
(Increase margin!)



SGD for structural SVM: The update

• Gradient:𝐰+ 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• At each step, go down the gradient:
𝐰 ← 𝐰− 𝛾! ⋅ 𝐰 + 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• Or equivalently
– If 𝐲( = 𝐲$: 𝐰 ← (1 − 𝛾!)𝐰

– Otherwise:   
𝐰 ← 1 − 𝛾! 𝐰− 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

26



SGD for structural SVM: The update

• Gradient:𝐰+ 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• At each step, go down the gradient:
𝐰 ← 𝐰− 𝛾! ⋅ 𝐰 + 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• Or equivalently
– If 𝐲( = 𝐲$: 𝐰 ← (1 − 𝛾!)𝐰

– Otherwise:   
𝐰 ← 1 − 𝛾! 𝐰− 𝐶𝛾! 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

27



SGD for structural SVM: The update

• Gradient:𝐰+ 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• At each step, go down the gradient:
𝐰 ← 𝐰− 𝛾! ⋅ 𝐰 + 𝐶 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

• Or equivalently
– If 𝐲( = 𝐲$: 𝐰 ← (1 − 𝛾!)𝐰

– Otherwise:   
𝐰 ← 1 − 𝛾! 𝐰− 𝐶𝛾! 𝜙 𝐱$, 𝐲′ − 𝜙 𝐱$, 𝐲$

28

Even of loss-augmented inference 
gives the true answer, shrink 𝐰. 
(Increase margin!)



Training structural SVM with SGD
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Given a training set D = 𝐱0 , 𝐲0
Initialize 𝐰 = 𝟎 ∈ ℜ1

1. For epoch = 1 … T:
1. Shuffle data
2. For each training example 𝐱# , 𝐲# ∈ 𝐷:

1. Let 𝐲$ = max
𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲# −𝐰"𝜙 𝐱# , 𝐲#
2. If 𝐲$ = 𝐲#

Shrink 𝐰 ← 1 − 𝛾! 𝐰
Else: 

Update 𝐰 ← 1 − 𝛾! 𝐰− 𝐶𝛾! 𝜙 𝐱" , 𝐲′ − 𝜙 𝐱" , 𝐲"

2. Return w
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(loss-augmented) Inference step



Training structural SVM with SGD
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Given a training set D = 𝐱0 , 𝐲0
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Model update



Loss augmented inference

max
𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲# −𝐰"𝜙 𝐱# , 𝐲#

• Recall: Δ 𝐲, 𝐲# is the Hamming distance between 𝐲 and 𝐲#

• Last term in the inference is constant. So effectively
max
𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲#

• How difficult is this?
– Computationally, identical complexity to inference
– You need to implement inference anyway

• Minor tweak will give you loss-augmented inference

• Why does it help?
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Loss augmented inference

max
𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲# −𝐰"𝜙 𝐱# , 𝐲#
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𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲#

• How difficult is this?
– Computationally, identical complexity to inference
– You need to implement inference anyway

• Minor tweak will give you loss-augmented inference

• Exercise: Why does it help?
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Where are we?

• Structural Support Vector Machine
– How it naturally extends multiclass SVM

• Empirical Risk Minimization
– Or: how structural SVM and CRF are solving very similar 

problems

• Training Structural SVM via stochastic gradient descent
ü The algorithm and loss augmented inference
– Comparison to Perceptron
– Practical tips
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Recall: Structured Perceptron algorithm

Given a training set D = {(xi,yi)}
Initialize 𝐰 = 𝟎 ∈ ℜ=

1. For epoch = 1 … T:
1. Shuffle data
2. For each training example 𝐱$, 𝐲$ ∈ 𝐷:

1. Let 𝐲* = max
𝐲
𝐰(𝜙 𝐱!, 𝐲

2. If 𝐲* ≠ 𝐲!
Update 𝐰 ← 𝐰− 𝛾" 𝜙 𝐱# , 𝐲′ − 𝜙 𝐱# , 𝐲#

2. Return w
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Inference within the training loop
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Given a training set D = {(xi,yi)}
Initialize 𝐰 = 𝟎 ∈ ℜ=

1. For epoch = 1 … T:
1. Shuffle data
2. For each training example 𝐱$, 𝐲$ ∈ 𝐷:

1. Let 𝐲* = max
𝐲
𝐰(𝜙 𝐱!, 𝐲

2. If 𝐲* ≠ 𝐲!
Update 𝐰 ← 𝐰− 𝛾" 𝜙 𝐱# , 𝐲′ − 𝜙 𝐱# , 𝐲#

2. Return w
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Update only on an error. 
Structured Perceptron is an mistake-driven algorithm.
If there is a mistake, promote y and demote y’



SGD for Structural SVM
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Given a training set D = {(xi,yi)}
Initialize 𝐰 = 𝟎 ∈ ℜ1

1. For epoch = 1 … T:
1. Shuffle data
2. For each training example 𝐱# , 𝐲# ∈ 𝐷:

1. Let 𝐲$ = max
𝐲

𝐰"𝜙 𝐱# , 𝐲 + Δ 𝐲, 𝐲# −𝐰"𝜙 𝐱# , 𝐲#
2. If 𝐲$ = 𝐲#

Shrink 𝐰 ← 1 − 𝛾! 𝐰
Else: 

Update 𝐰 ← 1 − 𝛾! 𝐰− 𝐶𝛾! 𝜙 𝐱" , 𝐲′ − 𝜙 𝐱" , 𝐲"

2. Return w

Update is a lot like the Perceptron 
update. Two differences:
1. Loss augmented inference instead of 

standard inference
2. Shrink w, even if it the inference is 

correct



SGD for structural SVM and Perceptron

SGD update is a lot like the Perceptron update

Two differences:
1. Loss augmented inference

If Δ is defined to be uniformly zero, this disappears

2. Shrink w, even if it the inference is correct
If no regularization (or C is very large), this disappears
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Where are we?

• Structural Support Vector Machine
– How it naturally extends multiclass SVM

• Empirical Risk Minimization
– Or: how structural SVM and CRF are solving very similar 

problems

• Training Structural SVM via stochastic gradient descent
ü The algorithm and loss augmented inference
ü Comparison to Perceptron
– Practical tips
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1. Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are square summable, but not 
summable

• Step sizes 𝛾% are positive
• Sum of squares of step sizes over t = 1 to 1 is not infinite
• Sum of step sizes over t = 1 to 1 is infinity

• Examples: 𝛾? =
@,
AB?

or 𝛾? =
@,

AB-,./

44



1. Convergence and learning rates

• Number of iterations to get to accuracy within 𝜖

• For strongly convex functions, 𝑁 examples, 𝑑
dimensional features:
– Gradient descent: 𝑂 𝑁𝑑 ln #

0

– Stochastic gradient descent: 𝑂 1
0

• More subtleties involved, but SGD is generally 
preferable when the data size is huge
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2. Extensions of the simple SGD update

• Several extensions to the vanilla SGD algorithm
See the survey by Ruder for a long discussion. Available online at 
https://ruder.io/optimizing-gradient-descent 

• Intuitions for the extensions:
– How do we choose learning rates? How should we decay them?

– If a certain dimension has very few updates, while another has 
many more updates, should their learning rates be the same?

– Can we keep a history of gradients to get more stable updates?

46



Intuition:
– Frequently updated features should get smaller learning rates
– Pay more attention to infrequent, possibly informative features
– Each weight (indexed by 𝑖) gets a separate learning rate 𝛾&,# at step 𝑡

• Suppose the gradient is 𝐠
– The shrinking of w is separate
– For structured SVM, 𝐠 = 𝜙(𝒙𝑖, 𝒚𝑖) − 𝜙(𝒙𝑖, 𝒚’)

• Set learning rate for weight 𝑖 as 

𝛾8,0 =
𝛾9

∑:;98 𝐠:,0<

2a. The AdaGrad update

47

Typically 
computed 
as a vector 
operation. 

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for 
online learning and stochastic optimization. JMLR, 2011.



Intuition:
– Frequently updated features should get smaller learning rates
– Pay more attention to infrequent, possibly informative features
– Each weight (indexed by 𝑖) gets a separate learning rate 𝛾&,# at step 𝑡

• Suppose the gradient is 𝐠
– The shrinking of w is separate
– For structured SVM, 𝐠 = 𝜙(𝒙𝑖, 𝒚𝑖) − 𝜙(𝒙𝑖, 𝒚’)

• Set learning rate for weight 𝑖 as 

𝛾8,0 =
𝛾9

∑:;98 𝐠:,0<

2a. The AdaGrad update

48
Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for 
online learning and stochastic optimization. JMLR, 2011.

Typically 
computed 
as a vector 
operation. 



• In practice, the denominator is accumulated

• Initialize 𝑣,,! = 0 for all weights (indexed by  𝑖)
• At each step:

– Compute the gradient as always. Call the gradient vector 𝐠

– For every dimension (indexed by 𝑖), update the denominator for the learning rate:
𝑣%,! ← 𝑣%.#,! + 𝒈!/

– The learning rate for dimension 𝑖 is 

𝛾%,! ←
𝛾,
𝑣%,!

Easy to implement, especially with vector operators
Has theoretical guarantees of being faster than SGD (See paper for details)

2a. Implementing the AdaGrad update

49
Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for 
online learning and stochastic optimization. JMLR, 2011.



2b. RMSProp

The AdaGrad decay can be too aggressive: the denominator may grow too fast. 

Uses a hyperparameter 𝛽 that is between 0 and 1  

• Initialize 𝑣$,# = 0 for all weights (indexed by  𝑖)
• At each step:

– Compute the gradient as always. Call the gradient vector 𝐠

– Decay the denominator instead of just accumulating to it (i.e, compute an exponential moving 
average):

𝑣",# = 𝛽𝑣"&',# + 1 − 𝛽 𝐠",#(

– Then compute the learning rate for each weight as before 

𝛾",# ←
𝛾$
𝑣",#

50
Tieleman, T. and Hinton, G. Lecture 6.5 - RMSProp, Coursera: Neural Networks 
for Machine Learning.



2c. Adam (Adaptive Moment Estimation)

• Can be seen as an extension of RMSProp (and also AdaGrad)

• General idea: 
– Keep track of the history of gradients as an exponential moving average

– Keep an exponential moving average of the squares of individual gradients 
as well (as in RMSProp)

– Perform an update using the average gradient (not just the currently 
computed one), and use the feature-specific learning rates as with 
RMSProp
• Has a bias correction step prior to this (see paper for details)

• Commonly used in practice

51
Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv
preprint arXiv:1412.6980 (2014).



3. Mini-batches for SGD

• What we saw: Approximate the gradient with a single example

• Instead, select small set (e.g. 10 or 100 or more) of examples (called 
mini-batch) at each step and use those to approximate the gradient

• Compute subgradient of this mini-batch and update w

• Converges faster, more stable

• Exercise: Work out the details of the mini-batch update
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4. Miscellaneous tips

• Shuffle the dataset at the beginning of each epoch

• Monitor training cost and validation error
– Training error should  “generally” decrease
– Stop training when validation error doesn’t change for some time

• Very important: Check your gradient computation
– Even small errors will make SGD erratic
– Finite differences: 

• See Leon Bottou’s “Stochastic Gradient Descent Tricks”

• Experiment with learning rates using a small dataset
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Summary: Optimizing the SVM objective

• We have seen a solver for structural SVMs
– Stochastic sub-gradient descent and some variants
– Easy to implement

• Other approaches exist
– Dual co-ordinate ascent/descent, cutting planes, etc.

• To use in your problem (for all solvers):
– Need to define the model (independence assumptions between 

predictions), the features, inference and loss-augmented inference

• Important: SGD is a general strategy, not just for SVMs
– Use for other objective functions, neural networks, etc.
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Big picture

• Structural Support Vector Machine
– How it naturally extends multiclass SVM

• Empirical Risk Minimization
– Or: how structural SVM and CRF are solving very similar problems

• Training via stochastic gradient descent
– Broadly applicable
– For structural SVM, the computationally difficult step is computing the 

gradient (needs loss-augmented inference). The rest is standard SGD.
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