
CS 6355: Structured Prediction

Learning with weak supervision
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What we have seen so far…

• What is structured output?

• Joint scoring functions over multiple interacting 
decisions

• Various families of inference algorithms
– Search over a combinatorial space

• Learning in the fully supervised setting
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The difficulty with supervised learning

Annotated data is expensive and costs increase when…
– …a task requires specialized expertise

E.g. “Only a trained linguist or a board certified radiologist can label  
my data”

– …labeling examples involves making multiple decisions
E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

3



The difficulty with supervised learning

Annotated data is expensive and costs increase when…
– …a task requires specialized expertise

E.g. “Only a trained linguist or a board certified radiologist can label  
my data”

– …labeling examples involves making multiple decisions
E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

4

Creating labeled examples for structured output 
problems is expensive and time consuming



What if: The labels are missing

Training data: 𝐷 = {(𝐱𝑖, 𝐲𝑖)}

Or perhaps we have

A small number of labeled examples
+

Extra information in the form of unlabeled examples, 
or constraints
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{𝐱𝑖}



This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints
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Weak supervision: The motivation

What can we do with unlabeled or partially labeled 
examples?

Assume that we know what the task is, that is, the definition 
of the structure in question

Example:
• Suppose we know that my task involves predicting a sequence of 

labels, but…
• …we don’t have any labeled data
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The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

9



The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

10

Other kinds of 
supervision exist. 



The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

11

Ex
pe

ns
iv

e
Ty

pi
ca

lly
 c

he
ap

er

Other kinds of 
supervision exist. 



The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

12

Ex
pe

ns
iv

e
Ty

pi
ca

lly
 c

he
ap

er

Other kinds of 
supervision exist. 

Usually we have a mix 
of different kinds of 
supervision.



The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

13

Ex
pe

ns
iv

e
Ty

pi
ca

lly
 c

he
ap

er

Other kinds of 
supervision exist. 

Usually we have a mix 
of different kinds of 
supervision.

How do we systematically take advantage of such signals?



This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints
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Expectation Maximization

• A meta-algorithm to estimate a probability distribution when 
some part of the output is missing
– The entire output could be missing (i.e. unlabeled examples)
– A part of the output could be missing (i.e., partially labeled examples)

• Needs assumptions about the underlying probability 
distribution
– Performance sensitive to the validity of this assumption (and also the 

initial guess of the parameters)

• Converges to a local maximum of the likelihood function
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Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters 
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)
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But our model doesn’t directly tell us about this probability. 
It only knows 𝑃! 𝐱" , 𝐲" .



Let’s revisit maximum likelihood estimation
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Goal: Maximize this expression in terms of the parameters

This maximization is not easy. Sum inside log



Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Why do we want to maximize this? Because this 
gives us the maximum likelihood estimate
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

This is true for any probability distribution 𝑄" 𝐲
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

This is true for any probability distribution 𝑄" 𝐲

The summation over 𝐲 is the definition of 
expectation with respect to 𝑄" 𝐲

𝐸*~) 𝑓(𝑧) =*
*

𝑄 𝑧 𝑓 𝑧
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

How do we proceed now? 
We haven’t made the problem any simpler by just rewriting it.



Jensen’s inequality

If 𝑓 is a convex function and 𝑋 is a random variable, then

𝑓 𝐸 𝑋 ≤ 𝐸 𝑓(𝑋)

Or: If 𝑓 is a concave function and 𝑋 is a random variable, then

𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

33



Let’s apply Jensen’s inequality

34

If 𝑓 is a concave function and 𝑋 is a random variable, then
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)
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If 𝑓 is a concave function and 𝑋 is a random variable, then
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

Let us apply this to the following function:

log 𝐸@~B!
𝑃C 𝐱D, 𝐲
𝑄D 𝑦
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If 𝑓 is a concave function and 𝑋 is a random variable, then
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

Let us apply this to the following function:

log 𝐸@~B!
𝑃C 𝐱D, 𝐲
𝑄D 𝑦

log(𝑥) is a concave function in 𝑥 and the expression inside the 
expectation is a random variable

log 𝐸@~B!
𝑃C 𝐱D, 𝐲
𝑄D 𝑦

≥ 𝐸@~B! log
𝑃C 𝐱D, 𝐲
𝑄D 𝑦



Let us build an approximation
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

log 𝐸+~)!
𝑃! 𝐱" , 𝐲
𝑄" 𝑦

≥ 𝐸+~)! log
𝑃! 𝐱" , 𝐲
𝑄" 𝑦

By Jensen’s inequality: 
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Rewrite log + linearity of expectation
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What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Greater 
than



Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

41

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Greater 
than

The strategy: Let us maximize this lower 
bound on the likelihood instead



Expectation Maximization: The strategy

What we want (but can’t have)

log likelihood 𝐷 ∣ 𝜃 =5
!

log 5
𝐲∈𝓎(𝐱#)

𝑃"(𝐱! , 𝐲)

The strategy: Think of log probabilities as random variables

Learn by repeatedly maximizing a lower bound of the log likelihood

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)
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Expectation Maximization: The strategy

Learning by maximizing expected log likelihood of the data

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)
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Expectation Maximization: The strategy

Learning by maximizing expected log likelihood of the data

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)

Still need to decide what is a good 𝑄!
What we would like is the one that makes this lower bound tight 

log 𝐸)~+#
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

≥ 𝐸)~+# log
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

44

Jensen’s 
inequality



Expectation Maximization: The strategy

Learning by maximizing expected log likelihood of the data

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)

Still need to decide what is a good 𝑄!
What we would like is the one that makes this lower bound tight 

log 𝐸)~+#
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

≥ 𝐸)~+# log
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

We can show that if we had an estimate of the 𝜃, say 𝜃,, then a tight 
lower bound is given by setting

𝑄! 𝑦 = 𝑃", 𝐲 ∣ 𝒙𝒊
45

Jensen’s 
inequality



Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃" 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃" 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃

50

Independent of 𝜃



Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

52

Intuitively: What is distribution 
over the latent variables for 
this set of parameters



Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

53

Intuitively: What is distribution 
over the latent variables for 
this set of parameters

Intuitively: Using the current 
estimate for the hidden 
variables, what is the best set of 
parameters for the entire data



Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

54

Given the parameters 𝜃-, we can 
compute this function. Why?

This step needs can be solved either 
analytically or algorithmically.



Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃
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Given the parameters 𝜃-, we can 
compute this function. Why?

This step needs can be solved either 
analytically for simple problems or 
more often algorithmically.

EM is a meta-algorithm. To be fully instantiated, we need:

• A definition of the probability distributions, 

• An algorithm for the E step

• An algorithm (or an analytical solution) for the M step



Intuition

56

We want to maximize this function

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)



Intuition

57

𝜃0

Start with a guess

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)



Intuition

58

𝜃0

Construct the expected log-likelihood function using the current 
guess and maximize it instead

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲



Intuition

59

𝜃1

New set of 
parameters

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃0

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲



Intuition
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Construct the expected log-likelihood function using the current 
parameters and maximize it instead

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0



Intuition

61

Construct the expected log-likelihood function using the current 
parameters and maximize it instead

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0



Intuition

62

𝜃3
New set of 
parameters

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0



Intuition

63

𝜃3 𝜃4

Construct the expected log-likelihood function using the current 
parameters and maximize it instead to get new set of parameters

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0



Intuition

64

1. Our initial guess matters, we could have landed on another local maximum as 
well. But we will always end up at one of the local maxima

2. We are replacing our “difficult” optimization problems with a sequence of 
“easy” ones.

𝜃3 𝜃4𝜃1𝜃0

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲



Comments about EM

• Will converge to a local maximum of the log-likelihood
– Different initializations can give us different final estimates of 

probabilities

• How many iterations
– Till convergence. Keep track of expected log likelihood across 

iterations and if the change is smaller than some ² then stop

• What we need to specify the learning algorithm
– A task-specific definition of the probabilities
– A way to solve the maximization (the M-step)

• Gives us a general template for building models when we 
don’t have fully labeled data

65



This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints

66



Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial 
structure 𝐲D
– The partial structure could be empty, giving us the fully 

unsupervised setting
– Or it could have labeled some parts of the structure for 

each example

67



Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial 
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example 
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters
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Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial 
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example 
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

69

This step requires some 
type of inference



Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial 
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example 
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

70

This step requires some 
type of inference

The completed examples could involve a hard decision (i.e. a 
structure), or a soft decision(i.e. a probability for each label)



Specific instances of this idea

• The EM algorithm for hidden Markov Models: The 
Baum Welch algorithm

• When the learner in the model update step is the 
structural SVM, we get the latent structured SVM
– (with some caveats about the cost of misclassification, see 

Yu & Joachims 2009 for details)

• We can instantiate an EM algorithm for CRF style 
models as well

71



A simple example

72

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like



A simple example

73

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:



A simple example

74

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

_ 𝐴 _𝒙𝟏

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:



A simple example

75

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

_ 𝐴 _𝒙𝟏

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:

What can we do with this data?



A simple example

76

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

_ 𝐴 _𝒙𝟏

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:

What can we do with this data?

If we had the parameters of the model, we 
can predict the missing labels



A simple example

77

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

𝐲𝟏 𝐡𝟏
The annotated 
part of the 
output for this 
example

The unannotated 
(i.e. hidden) part of 
the output for this 
example



A simple example

78

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐲𝟏 𝐡𝟏
The annotated 
part of the 
output for this 
example

The unannotated 
(i.e. hidden) part of 
the output for this 
example



A simple example

79

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐲𝟏 𝐡𝟏
The annotated 
part of the 
output for this 
example

The unannotated 
(i.e. hidden) part of 
the output for this 
example

We can ask: What is the best value for 𝐡𝟏 for this example as per the current model?



A simple example

80

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐲𝟏 𝐡𝟏
The annotated 
part of the 
output for this 
example

The unannotated 
(i.e. hidden) part of 
the output for this 
example

We can ask: What is the best value for 𝐡𝟏 for this example as per the current model?
𝐡2∗ = argmax

𝐡
𝑠𝑐𝑜𝑟𝑒(𝐱𝟏, 𝐲𝟏, 𝐡, 𝐰)



A simple example

81

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑



A simple example

82

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

We can ask: What is the best value for 𝒉 for each example as per the current model?
𝐡"∗ = argmax

𝐡
𝑠𝑐𝑜𝑟𝑒(𝐱𝐢, 𝒚𝒊, 𝐡, 𝐰)

Perform inference to find best estimates for hidden variables



A simple example
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We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

Complete the missing labels using 𝐰

𝐵 𝐴 𝐵𝒙𝟏

𝐵 𝐴 𝐶 𝐶𝒙𝟐

𝐴 𝐴𝒙𝟑



A simple example
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We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

Complete the missing labels using 𝐰

𝐵 𝐴 𝐵𝒙𝟏

𝐵 𝐴 𝐶 𝐶𝒙𝟐

𝐴 𝐴𝒙𝟑

Use this newly completed data to 
train new update for 𝐰

Use any loss function



A simple example
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We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection 
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we 
can predict the missing labels

Suppose the current model was denoted by 
𝐰 and the corresponding scoring function as 
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

Complete the missing labels using 𝐰

𝐵 𝐴 𝐵𝒙𝟏

𝐵 𝐴 𝐶 𝐶𝒙𝟐

𝐴 𝐴𝒙𝟑

Use this newly completed data to 
train new update for 𝐰

Use any loss function



This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints
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Constraint Driven Learning

Suppose we have some constraints about the output 
structures, but don’t have any (or much) labeled data

Examples: 
• Every part of speech sequence should have a verb 
• Every image patch that is recognized as a bicycle 

should have at least one patch that is recognized as a 
wheel
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Constraint Driven Learning

Suppose we have some constraints about the output 
structures, but don’t have any (or much) labeled data

Examples: 
• Every part of speech sequence should have a verb 
• Every image patch that is recognized as a bicycle 

should have at least one patch that is recognized as a 
wheel
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How do we incorporate constraints into the learning process?



Constraint Driven Learning

Given a dataset with examples 𝐱D that are labeled with a partial 
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example 
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

89

This step requires some 
type of inference
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Constraint Driven Learning

Given a dataset with examples 𝐱D that are labeled with a partial 
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example  with 

constrained inference
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

91Variants of this idea exist. See [Chang et al, 2007, 2012]



Learning with constraints

General idea: In the step where we expand (or complete) the partially 
labeled structures, use knowledge to guide the learner
• Any of the inference algorithms we have seen can be used

• Posterior regularization Ganchev et al [2010] show that this idea 
applies for the case where we are not making a hard decision, but 
using the EM algorithm we have seen before

• Why do constraints help? 
– They restrict the search space for inference algorithms using 

knowledge
– Constraints guide learning by making the learner explore the 

“better” parts of the parameter space
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Final words

• Annotated data is expensive, more so for structures

• We can and should design learning algorithms that take advantage 
of any available supervision
– Could be labeled, unlabeled or partially labeled examples
– Could be knowledge

• The EM algorithm and its variants form a general schematic for 
designing such algorithms
– Generally has one phase where we predict labels or distributions over 

labels for examples, and another where we use these predictions to 
improve the model

• Enforcing constraints during the prediction phase the can help 
reduce demand on labeled data
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