
CS 6355: Structured Prediction

Learning with weak supervision

1

What we have seen so far…

• What is structured output?

• Joint scoring functions over multiple interacting
decisions

• Various families of inference algorithms
– Search over a combinatorial space

• Learning in the fully supervised setting

2

The difficulty with supervised learning

Annotated data is expensive and costs increase when…
– …a task requires specialized expertise

E.g. “Only a trained linguist or a board certified radiologist can label
my data”

– …labeling examples involves making multiple decisions
E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

3

The difficulty with supervised learning

Annotated data is expensive and costs increase when…
– …a task requires specialized expertise

E.g. “Only a trained linguist or a board certified radiologist can label
my data”

– …labeling examples involves making multiple decisions
E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

4

Creating labeled examples for structured output
problems is expensive and time consuming

What if: The labels are missing

Training data: 𝐷 = {(𝐱𝑖, 𝐲𝑖)}

Or perhaps we have

A small number of labeled examples
+

Extra information in the form of unlabeled examples,
or constraints

5

{𝐱𝑖}

This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints

6

This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints

7

Weak supervision: The motivation

What can we do with unlabeled or partially labeled
examples?

Assume that we know what the task is, that is, the definition
of the structure in question

Example:
• Suppose we know that my task involves predicting a sequence of

labels, but…
• …we don’t have any labeled data

8

The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

9

The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

10

Other kinds of
supervision exist.

The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

11

Ex
pe

ns
iv

e
Ty

pi
ca

lly
 c

he
ap

er

Other kinds of
supervision exist.

The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

12

Ex
pe

ns
iv

e
Ty

pi
ca

lly
 c

he
ap

er

Other kinds of
supervision exist.

Usually we have a mix
of different kinds of
supervision.

The many forms of supervision

• Labeled examples
– We have examples with the output structure labeled

• Unlabeled/partially labeled examples
– We have examples, and perhaps also parts of the output structures for some of them

• Hard constraints
– Restrict the space of output structures that can exist

• Soft constraints
– Similar to hard constraints, but allows violations

• Distant/indirect supervision
– We know of another task that is correlated in a well defined way with the task we care about

• Heuristics
– We can write simple programs that are reasonably good on specific examples

13

Ex
pe

ns
iv

e
Ty

pi
ca

lly
 c

he
ap

er

Other kinds of
supervision exist.

Usually we have a mix
of different kinds of
supervision.

How do we systematically take advantage of such signals?

This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints

14

Expectation Maximization

• A meta-algorithm to estimate a probability distribution when
some part of the output is missing
– The entire output could be missing (i.e. unlabeled examples)
– A part of the output could be missing (i.e., partially labeled examples)

• Needs assumptions about the underlying probability
distribution
– Performance sensitive to the validity of this assumption (and also the

initial guess of the parameters)

• Converges to a local maximum of the likelihood function

15

Expectation Maximization

• A meta-algorithm to estimate a probability distribution when
some part of the output is missing
– The entire output could be missing (i.e. unlabeled examples)
– A part of the output could be missing (i.e., partially labeled examples)

• Needs assumptions about the underlying probability
distribution
– Performance sensitive to the validity of this assumption (and also the

initial guess of the parameters)

• Converges to a local maximum of the likelihood function

16

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

17

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

18

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

19

But our model doesn’t directly tell us about this probability.
It only knows 𝑃! 𝐱" , 𝐲" .

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

How do we state the probability term in terms of 𝑃"(𝒙! , 𝒚!)?

20

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

How do we state the probability term in terms of 𝑃"(𝒙! , 𝒚!)?
Answer: Marginalize the missing terms

21

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

How do we state the probability term in terms of 𝑃"(𝒙! , 𝒚!)?
Answer: Marginalize the missing terms

log likelihood 𝐷 ∣ 𝜃 =5
!

log 5
𝐲∈𝓎(𝐱#)

𝑃"(𝐱! , 𝐲)

22

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

How do we state the probability term in terms of 𝑃"(𝒙! , 𝒚!)?
Answer: Marginalize the missing terms

log likelihood 𝐷 ∣ 𝜃 =5
!

log 5
𝐲∈𝓎(𝐱#)

𝑃"(𝐱! , 𝐲)

23

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 𝑃 𝐱! ∣ 𝜃

How do we state the probability term in terms of 𝑃"(𝒙! , 𝒚!)?
Answer: Marginalize the missing terms

log likelihood 𝐷 ∣ 𝜃 =5
!

log 5
𝐲∈𝓎(𝐱#)

𝑃"(𝐱! , 𝐲)

24
Sum over all structures for the example 𝐱"

Let’s revisit maximum likelihood estimation

Given unlabeled examples 𝐷 = {𝐱!}, we want to learn the parameters
𝜃 that defines a probability distribution 𝑃"(𝐱! , 𝐲!)

Find parameters that maximize the likelihood (or equivalently log-
likelihood) of the data

log likelihood 𝐷 ∣ 𝜃 =5
!

log 5
𝐲∈𝓎(𝐱#)

𝑃"(𝐱! , 𝐲)

25

Goal: Maximize this expression in terms of the parameters

This maximization is not easy. Sum inside log

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

26

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Why do we want to maximize this? Because this
gives us the maximum likelihood estimate

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

27

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

This is true for any probability distribution 𝑄" 𝐲

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

28

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

This is true for any probability distribution 𝑄" 𝐲

The summation over 𝐲 is the definition of
expectation with respect to 𝑄" 𝐲

𝐸*~) 𝑓(𝑧) =*
*

𝑄 𝑧 𝑓 𝑧

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

29

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

𝐸*~) 𝑓(𝑧) =*
*

𝑄 𝑧 𝑓 𝑧

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

30

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

𝐸*~) 𝑓(𝑧) =*
*

𝑄 𝑧 𝑓 𝑧

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

31

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

𝐸*~) 𝑓(𝑧) =*
*

𝑄 𝑧 𝑓 𝑧

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

32

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

How do we proceed now?
We haven’t made the problem any simpler by just rewriting it.

Jensen’s inequality

If 𝑓 is a convex function and 𝑋 is a random variable, then

𝑓 𝐸 𝑋 ≤ 𝐸 𝑓(𝑋)

Or: If 𝑓 is a concave function and 𝑋 is a random variable, then

𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

33

Let’s apply Jensen’s inequality

34

If 𝑓 is a concave function and 𝑋 is a random variable, then
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

Let’s apply Jensen’s inequality

35

If 𝑓 is a concave function and 𝑋 is a random variable, then
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

Let us apply this to the following function:

log 𝐸@~B!
𝑃C 𝐱D, 𝐲
𝑄D 𝑦

Let’s apply Jensen’s inequality

36

If 𝑓 is a concave function and 𝑋 is a random variable, then
𝑓 𝐸 𝑋 ≥ 𝐸 𝑓(𝑋)

Let us apply this to the following function:

log 𝐸@~B!
𝑃C 𝐱D, 𝐲
𝑄D 𝑦

log(𝑥) is a concave function in 𝑥 and the expression inside the
expectation is a random variable

log 𝐸@~B!
𝑃C 𝐱D, 𝐲
𝑄D 𝑦

≥ 𝐸@~B! log
𝑃C 𝐱D, 𝐲
𝑄D 𝑦

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

37

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

log 𝐸+~)!
𝑃! 𝐱" , 𝐲
𝑄" 𝑦

≥ 𝐸+~)! log
𝑃! 𝐱" , 𝐲
𝑄" 𝑦

By Jensen’s inequality:

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

38

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

log 𝐸+~)!
𝑃! 𝐱" , 𝐲
𝑄" 𝑦

≥ 𝐸+~)! log
𝑃! 𝐱" , 𝐲
𝑄" 𝑦

By Jensen’s inequality:

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

39

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Rewrite log + linearity of expectation

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

40

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Greater
than

Let us build an approximation

LL 𝐷 𝜃 = *
"

log *
𝐲∈𝓎 𝐱!

𝑃! 𝐱 " , 𝐲

= *
"

log *
𝐲∈𝓎 𝐱!

𝑄" 𝐲 ⋅
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

= *
"

log 𝐸𝐲~)!
𝑃! 𝐱 " , 𝐲
𝑄" 𝐲

≥ *
"

𝐸𝐲~)! log
𝑃! 𝑥" , 𝑦
𝑄" 𝐲

= *
"

𝐸𝐲~)! log 𝑃! 𝐱 " , 𝐲 −*
"

𝐸𝐲~)! log 𝑄" 𝐲

41

What we want: Maximize log likelihood 𝐷 ∣ 𝜃 = LL D ∣ 𝜃

Greater
than

The strategy: Let us maximize this lower
bound on the likelihood instead

Expectation Maximization: The strategy

What we want (but can’t have)

log likelihood 𝐷 ∣ 𝜃 =5
!

log 5
𝐲∈𝓎(𝐱#)

𝑃"(𝐱! , 𝐲)

The strategy: Think of log probabilities as random variables

Learn by repeatedly maximizing a lower bound of the log likelihood

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)

42

Expectation Maximization: The strategy

Learning by maximizing expected log likelihood of the data

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)

43

Expectation Maximization: The strategy

Learning by maximizing expected log likelihood of the data

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)

Still need to decide what is a good 𝑄!
What we would like is the one that makes this lower bound tight

log 𝐸)~+#
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

≥ 𝐸)~+# log
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

44

Jensen’s
inequality

Expectation Maximization: The strategy

Learning by maximizing expected log likelihood of the data

𝐹 𝜃, 𝑄! =5
!

𝐸)~+# log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+# log𝑄!(𝑦)

Still need to decide what is a good 𝑄!
What we would like is the one that makes this lower bound tight

log 𝐸)~+#
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

≥ 𝐸)~+# log
𝑃" 𝐱! , 𝐲
𝑄!(𝑦)

We can show that if we had an estimate of the 𝜃, say 𝜃,, then a tight
lower bound is given by setting

𝑄! 𝑦 = 𝑃", 𝐲 ∣ 𝒙𝒊
45

Jensen’s
inequality

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃" 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃

46

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃" 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃

47

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃

48

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃

49

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by maximizing with respect to 𝜃

𝐹 𝜃, 𝑄, =5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲 −5
!

𝐸)~+#, log𝑄!
,(𝑦)

• Return final 𝜃

50

Independent of 𝜃

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

51

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

52

Intuitively: What is distribution
over the latent variables for
this set of parameters

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

53

Intuitively: What is distribution
over the latent variables for
this set of parameters

Intuitively: Using the current
estimate for the hidden
variables, what is the best set of
parameters for the entire data

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

54

Given the parameters 𝜃-, we can
compute this function. Why?

This step needs can be solved either
analytically or algorithmically.

Expectation Maximization

• Initialize the parameters 𝜃.

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

𝑄!, 𝑦 ← 𝑃", 𝐲 ∣ 𝒙𝒊

– M-Step: Find 𝜃,/0 by solving the maximization problem

𝜃,/0 ← argmax
"

5
!

𝐸)~+#, log 𝑃" 𝐱! , 𝐲

• Return final 𝜃

55

Given the parameters 𝜃-, we can
compute this function. Why?

This step needs can be solved either
analytically for simple problems or
more often algorithmically.

EM is a meta-algorithm. To be fully instantiated, we need:

• A definition of the probability distributions,

• An algorithm for the E step

• An algorithm (or an analytical solution) for the M step

Intuition

56

We want to maximize this function

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

Intuition

57

𝜃0

Start with a guess

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

Intuition

58

𝜃0

Construct the expected log-likelihood function using the current
guess and maximize it instead

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

Intuition

59

𝜃1

New set of
parameters

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃0

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

Intuition

60

Construct the expected log-likelihood function using the current
parameters and maximize it instead

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0

Intuition

61

Construct the expected log-likelihood function using the current
parameters and maximize it instead

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0

Intuition

62

𝜃3
New set of
parameters

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0

Intuition

63

𝜃3 𝜃4

Construct the expected log-likelihood function using the current
parameters and maximize it instead to get new set of parameters

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

𝜃1𝜃0

Intuition

64

1. Our initial guess matters, we could have landed on another local maximum as
well. But we will always end up at one of the local maxima

2. We are replacing our “difficult” optimization problems with a sequence of
“easy” ones.

𝜃3 𝜃4𝜃1𝜃0

log likelihood 𝐷 ∣ 𝜃 =*
"

log *
𝐲∈𝓎(𝐱!)

𝑃!(𝐱" , 𝐲)

𝜃-12 ← argmax
!

*
"

𝐸+~)!" log 𝑃! 𝐱" , 𝐲

Comments about EM

• Will converge to a local maximum of the log-likelihood
– Different initializations can give us different final estimates of

probabilities

• How many iterations
– Till convergence. Keep track of expected log likelihood across

iterations and if the change is smaller than some ² then stop

• What we need to specify the learning algorithm
– A task-specific definition of the probabilities
– A way to solve the maximization (the M-step)

• Gives us a general template for building models when we
don’t have fully labeled data

65

This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints

66

Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D
– The partial structure could be empty, giving us the fully

unsupervised setting
– Or it could have labeled some parts of the structure for

each example

67

Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

68

Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

69

This step requires some
type of inference

Learning with latent variables

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

70

This step requires some
type of inference

The completed examples could involve a hard decision (i.e. a
structure), or a soft decision(i.e. a probability for each label)

Specific instances of this idea

• The EM algorithm for hidden Markov Models: The
Baum Welch algorithm

• When the learner in the model update step is the
structural SVM, we get the latent structured SVM
– (with some caveats about the cost of misclassification, see

Yu & Joachims 2009 for details)

• We can instantiate an EM algorithm for CRF style
models as well

71

A simple example

72

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

A simple example

73

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:

A simple example

74

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

_ 𝐴 _𝒙𝟏

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:

A simple example

75

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

_ 𝐴 _𝒙𝟏

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:

What can we do with this data?

A simple example

76

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

𝐵 𝐵 𝐶 𝐴𝒙A fully labeled example may look like

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

_ 𝐴 _𝒙𝟏

0 1 2 𝑛

𝒙

…

Suppose we are assuming this model:

What can we do with this data?

If we had the parameters of the model, we
can predict the missing labels

A simple example

77

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

𝐲𝟏 𝐡𝟏
The annotated
part of the
output for this
example

The unannotated
(i.e. hidden) part of
the output for this
example

A simple example

78

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐲𝟏 𝐡𝟏
The annotated
part of the
output for this
example

The unannotated
(i.e. hidden) part of
the output for this
example

A simple example

79

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐲𝟏 𝐡𝟏
The annotated
part of the
output for this
example

The unannotated
(i.e. hidden) part of
the output for this
example

We can ask: What is the best value for 𝐡𝟏 for this example as per the current model?

A simple example

80

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐲𝟏 𝐡𝟏
The annotated
part of the
output for this
example

The unannotated
(i.e. hidden) part of
the output for this
example

We can ask: What is the best value for 𝐡𝟏 for this example as per the current model?
𝐡2∗ = argmax

𝐡
𝑠𝑐𝑜𝑟𝑒(𝐱𝟏, 𝐲𝟏, 𝐡, 𝐰)

A simple example

81

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

A simple example

82

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

We can ask: What is the best value for 𝒉 for each example as per the current model?
𝐡"∗ = argmax

𝐡
𝑠𝑐𝑜𝑟𝑒(𝐱𝐢, 𝒚𝒊, 𝐡, 𝐰)

Perform inference to find best estimates for hidden variables

A simple example

83

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

Complete the missing labels using 𝐰

𝐵 𝐴 𝐵𝒙𝟏

𝐵 𝐴 𝐶 𝐶𝒙𝟐

𝐴 𝐴𝒙𝟑

A simple example

84

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

Complete the missing labels using 𝐰

𝐵 𝐴 𝐵𝒙𝟏

𝐵 𝐴 𝐶 𝐶𝒙𝟐

𝐴 𝐴𝒙𝟑

Use this newly completed data to
train new update for 𝐰

Use any loss function

A simple example

85

We have three training examples:

Setting: Inputs are denoted by 𝒙𝒊, and each input is associated with a collection
of outputs each of which can be 𝐴, 𝐵 or 𝐶.

_ 𝐴 _𝒙𝟏

If we had the parameters of the model, we
can predict the missing labels

Suppose the current model was denoted by
𝐰 and the corresponding scoring function as
per the factor graph is 𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲, 𝐡,𝐰)

𝐵 _ _ 𝐶𝒙𝟐

𝐴 _𝒙𝟑

Complete the missing labels using 𝐰

𝐵 𝐴 𝐵𝒙𝟏

𝐵 𝐴 𝐶 𝐶𝒙𝟐

𝐴 𝐴𝒙𝟑

Use this newly completed data to
train new update for 𝐰

Use any loss function

This lecture

• What is weak supervision?

• The expectation maximization algorithm
– A general template for learning with weak supervision

• Learning with latent variables

• Learning with constraints

86

Constraint Driven Learning

Suppose we have some constraints about the output
structures, but don’t have any (or much) labeled data

Examples:
• Every part of speech sequence should have a verb
• Every image patch that is recognized as a bicycle

should have at least one patch that is recognized as a
wheel

87

Constraint Driven Learning

Suppose we have some constraints about the output
structures, but don’t have any (or much) labeled data

Examples:
• Every part of speech sequence should have a verb
• Every image patch that is recognized as a bicycle

should have at least one patch that is recognized as a
wheel

88

How do we incorporate constraints into the learning process?

Constraint Driven Learning

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

89

This step requires some
type of inference

Constraint Driven Learning

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example with

constrained inference
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

90

This step requires some
type of inference

Constraint Driven Learning

Given a dataset with examples 𝐱D that are labeled with a partial
structure 𝐲D

• Initialize the parameters 𝜃J randomly

• Iterate for t = 1, 2,… :
– Use the current model to “complete” each example with

constrained inference
– 𝜃KLM ← Train model using the newly completed examples

• Return the final set of parameters

91Variants of this idea exist. See [Chang et al, 2007, 2012]

Learning with constraints

General idea: In the step where we expand (or complete) the partially
labeled structures, use knowledge to guide the learner
• Any of the inference algorithms we have seen can be used

• Posterior regularization Ganchev et al [2010] show that this idea
applies for the case where we are not making a hard decision, but
using the EM algorithm we have seen before

• Why do constraints help?
– They restrict the search space for inference algorithms using

knowledge
– Constraints guide learning by making the learner explore the

“better” parts of the parameter space
92

Final words

• Annotated data is expensive, more so for structures

• We can and should design learning algorithms that take advantage
of any available supervision
– Could be labeled, unlabeled or partially labeled examples
– Could be knowledge

• The EM algorithm and its variants form a general schematic for
designing such algorithms
– Generally has one phase where we predict labels or distributions over

labels for examples, and another where we use these predictions to
improve the model

• Enforcing constraints during the prediction phase the can help
reduce demand on labeled data

93

