Support Vector Machines: Training with Stochastic Gradient Descent

Machine Learning

Support vector machines

Training by maximizing margin

The SVM objective

Solving the SVM optimization problem

Support vectors, duals and kernels

SVM objective function

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x})$$

Regularization term:

- Maximize the margin
- Imposes a preference over the hypothesis space and pushes for better generalization
- Can be replaced with other regularization terms which impose other preferences

Empirical Loss:

- Hinge loss
- Penalizes weight vectors that make mistakes
- Can be replaced with other loss functions which impose other preferences

A hyper-parameter that controls the tradeoff between a large margin and a small hinge-loss

Outline: Training SVM by optimization

- 1. Review of convex functions and gradient descent
- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Outline: Training SVM by optimization

- 1. Review of convex functions and gradient descent
- 2. Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Solving the SVM optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

This function is convex in w

A function f is convex if for every u, v in the domain, and for every $\lambda \in [0,1]$ we have

$$f(\lambda \mathbf{u} + (1 - \lambda)\mathbf{v}) \le \lambda f(\mathbf{u}) + (1 - \lambda)f(\mathbf{v})$$

From geometric perspective

Every tangent plane lies below the function

Convex functions

$$f(x) = -x$$
 Linear functions

$$f(x_1, x_2) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2}$$

$$f(x) = x^2 \qquad \qquad f(x) = \max(0, x)$$

$$\max \text{ is convex}$$

Some ways to show that a function is convex:

- 1. Using the definition of convexity
- 2. Showing that the second derivative is positive (for one dimensional functions)
- 3. Showing that the second derivative is positive semi-definite (for vector functions)

Not all functions are convex

Convex functions are convenient

A function f is convex if for every u, v in the domain, and for every $\lambda \in [0,1]$ we have

In general: Necessary condition for x to be a minimum for the function f is that the gradient $\nabla f(x) = 0$

For convex functions, this is both necessary and sufficient

Solving the SVM optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

This function is convex in w

- This is a quadratic optimization problem because the objective is quadratic
- Older methods: Used techniques from Quadratic Programming
 - Very slow
- No constraints, can use gradient descent
 - Still very slow!

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of / at w^t
 - Update \mathbf{w}^t to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of / at w^t
 - Update \mathbf{w}^t to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at \mathbf{w}^t
 - Update \mathbf{w}^t to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of / at w^t
 - Update \mathbf{w}^t to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Gradient descent for SVM

We are trying to minimize $J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

- 1. Initialize \mathbf{w}^0
- 2. For t = 0, 1, 2, ...
 - 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t . Call it $\nabla J(\mathbf{w}^{t+1})$
 - 2. Update w as follows:

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$$

r: The learning rate .

Outline: Training SVM by optimization

✓ Review of convex functions and gradient descent

2. Stochastic gradient descent

- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Gradient descent for SVM

We are trying to minimize $J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

- 1. Initialize \mathbf{w}^0
- 2. For t = 0, 1, 2, ...
 - 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t . Call it $\nabla J(\mathbf{w}^{t+1})$

Gradient of the SVM objective requires summing over the entire training set

Slow, does not really scale

r: Called the learning rate

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i} \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

Return final w

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i} \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S

3. Return final w

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i} \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$$

Given a training set
$$S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$$

- 1. Initialize $\mathbf{w}^0 = 0 \in \mathbb{R}^d$
- 2. For epoch = $1 \dots T$:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective $\hat{\mathbf{j}}$ at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{\mathbf{j}}(\mathbf{w}^{t-1})$

3. Return final **w**

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$

$$\hat{J}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

3. Return final **w**

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$

$$\hat{J}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

- 3. Update: $\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} \gamma_t \nabla J(\mathbf{w}^{t-1})$
- Return final w

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum \max(0, 1 - y_i\mathbf{w}^T\mathbf{x}_i)$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \Re^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1} . Call it $\nabla \hat{J}(\mathbf{w}^{t-1})$
 - 3. Update: $\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} \gamma_t \nabla J(\mathbf{w}^{t-1})$
- 3. Return final w

This algorithm is guaranteed to converge to the minimum of J if γ_t is small enough. Why? The objective $J(\mathbf{w})$ is a *convex* function

Outline: Training SVM by optimization

- ✓ Review of convex functions and gradient descent
- ✓ Stochastic gradient descent
- 3. Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Gradient Descent vs SGD

Gradient descent

Gradient Descent vs SGD

Stochastic Gradient descent

Gradient Descent vs SGD

Stochastic Gradient descent

Stochastic Gradient descent

Outline: Training SVM by optimization

- ✓ Review of convex functions and gradient descent
- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- 4. Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x})$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w}^0 = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:
 - 1. Pick a random example (\mathbf{x}_i, y_i) from the training set S
 - 2. Treat (\mathbf{x}_i, y_i) as a full dataset and take the *derivative of the SVM* objective at the current \mathbf{w}^{t-1} to be $\nabla J(\mathbf{w}^{t-1})$
 - 3. Update: $\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} \gamma_t \nabla J(\mathbf{w}^{t-1})$
- 3. Return final **w**

Hinge loss is not differentiable!

What is the derivative of the hinge loss with respect to w?

$$J(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \left(\max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i) \right)$$

Detour: Sub-gradients

Generalization of gradients to non-differentiable functions (Remember that every tangent is a hyperplane that lies below the function for convex functions)

Informally, a sub-tangent at a point is any hyperplane that lies below the function at the point.

A sub-gradient is the slope of that line

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

f is differentiable at x_1 Tangent at this point $f(x_1) + g_1^T(x - x_1)$ g_1 is a gradient at x_1 g_2

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

Sub-gradient of the SVM objective

$$J^{t}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C \max (0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$$

General strategy: First solve the max and compute the gradient for each case

Sub-gradient of the SVM objective

$$J^{t}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C \max (0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$$

General strategy: First solve the max and compute the gradient for each case

$$\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0 \\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$$

Outline: Training SVM by optimization

- ✓ Review of convex functions and gradient descent
- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- ✓ Sub-derivatives of the hinge loss
- 5. Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

$$\nabla J^t = \begin{cases} \mathbf{w} & \text{if } \max\left(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\right) = 0 \\ \mathbf{w} - Cy_i \mathbf{x}_i & \text{otherwise} \end{cases}$$
 Given a training set $S = \{(\mathbf{x}_i, y_i)\}$, $\mathbf{x} \in \Re^d$, $y \in \{-1, 1\}$

1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$

3. Return w

$$\nabla J^t = \begin{cases} \mathbf{w} & \text{if } \max\left(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\right) = 0 \\ \mathbf{w} - Cy_i \mathbf{x}_i & \text{otherwise} \end{cases}$$
 Given a training set $S = \{(\mathbf{x}_i, y_i)\}$, $\mathbf{x} \in \Re^d$, $y \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$
- 2. For epoch = $1 \dots T$:

Return w

$$\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max (0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0 \\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$:

Update
$$\mathbf{w} \leftarrow \mathbf{w} - \gamma_t \nabla J$$

3. Return **w**

$$\nabla J^{t} = \begin{cases} \mathbf{w} & \text{if } \max(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}) = 0 \\ \mathbf{w} - Cy_{i} \mathbf{x}_{i} & \text{otherwise} \end{cases}$$

Given a training set $S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$

- 1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$
- 2. For epoch = $1 \dots T$:

For each training example $(\mathbf{x}_i, y_i) \in S$:

If
$$y_i \mathbf{w}^T \mathbf{x}_i \leq 1$$
:
 $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$
else:
 $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$

3. Return **w**

Given a training set
$$S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$$

- 1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$:

```
If y_i \mathbf{w}^T \mathbf{x}_i \leq 1:

\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i

else:

\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}
```

3. Return **w**

 γ_t : learning rate, many tweaks possible

Given a training set
$$S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$$

- 1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$:

 γ_t : learning rate, many tweaks possible

```
If y_i \mathbf{w}^T \mathbf{x}_i \leq 1:

\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i

else:

\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}
```

Important to shuffle examples at the start of each epoch

3. Return w

Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are "square summable, but not summable"

- Step sizes γ_t are positive
- Sum of squares of step sizes over t = 1 to 1 is not infinite
- Sum of step sizes over t = 1 to 1 is infinity

• Some examples:
$$\gamma_t = \frac{\gamma_0}{1 + \frac{\gamma_0 t}{C}}$$
 or $\gamma_t = \frac{\gamma_0}{1 + t}$

Convergence and learning rates

- Number of iterations to get to accuracy within ϵ
- For strongly convex functions, N examples, d dimensional:
 - Gradient descent: $O\left(Nd\ln\frac{1}{\epsilon}\right)$
 - Stochastic gradient descent: $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge

Convergence and learning rates

- Number of iterations to get to accuracy within ϵ
- For strongly convex functions, N examples, d dimensional:
 - Gradient descent: $O\left(Nd\ln\frac{1}{\epsilon}\right)$
 - Stochastic gradient descent: $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge
- Recently, many variants that are based on this general strategy
 - Examples: Adagrad, momentum, Nesterov's accelerated gradient, Adam, RMSProp, etc...

Outline: Training SVM by optimization

- ✓ Review of convex functions and gradient descent
- ✓ Stochastic gradient descent
- ✓ Gradient descent vs stochastic gradient descent
- ✓ Sub-derivatives of the hinge loss
- ✓ Stochastic sub-gradient descent for SVM
- 6. Comparison to perceptron

Given a training set
$$S = \{(\mathbf{x}_i, y_i)\}, \mathbf{x} \in \mathbb{R}^d, y \in \{-1,1\}$$

- 1. Initialize $\mathbf{w} = 0 \in \mathbb{R}^d$
- 2. For epoch = 1 ... T:

For each training example $(\mathbf{x}_i, y_i) \in S$:

If
$$y_i \mathbf{w}^T \mathbf{x}_i \leq 1$$
:
 $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w} + \gamma_t C y_i \mathbf{x}_i$
else:
 $\mathbf{w} \leftarrow (1 - \gamma_t) \mathbf{w}$

3. Return **w**

Compare with the Perceptron update: If $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$, update $\mathbf{w} \leftarrow \mathbf{w} + \gamma_t y_i \mathbf{x}_i$

Perceptron vs. SVM

- Perceptron: Stochastic sub-gradient descent for a different loss
 - No regularization though

$$L_{Perceptron}(y, \mathbf{x}, \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$$

- SVM optimizes the hinge loss
 - With regularization

$$L_{Hinge}(y, \mathbf{x}, \mathbf{w}) = \max(0, 1 - y\mathbf{w}^T\mathbf{x})$$

SVM summary from optimization perspective

- Minimize regularized hinge loss
- Solve using stochastic gradient descent
 - Very fast, run time does not depend on number of examples
 - Compare with Perceptron algorithm: Perceptron does not maximize margin width
 - Perceptron variants can force a margin
 - Convergence criterion is an issue; can be too aggressive in the beginning and get to a reasonably good solution fast; but convergence is slow for very accurate weight vector
- Other successful optimization algorithms exist
 - Eg: Dual coordinate descent, implemented in liblinear