Support Vector Machines: Training with
 Stochastic Gradient Descent

Machine Learning

Support vector machines

- Training by maximizing margin
- The SVM objective
- Solving the SVM optimization problem
- Support vectors, duals and kernels

SVM objective function

> A hyper-parameter that controls the tradeoff between a large margin and a small hinge-loss

Outline: Training SVM by optimization

1. Review of convex functions and gradient descent
2. Stochastic gradient descent
3. Gradient descent vs stochastic gradient descent
4. Sub-derivatives of the hinge loss
5. Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

Outline: Training SVM by optimization

1. Review of convex functions and gradient descent
2. Stochastic gradient descent
3. Gradient descent vs stochastic gradient descent
4. Sub-derivatives of the hinge loss
5. Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

Solving the SVM optimization problem

$$
\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

This function is convex in \mathbf{w}

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

Recall: Convex functions

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in[0,1]$ we have

$$
f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v)
$$

From geometric perspective

Every tangent plane lies below the function

Convex functions

$$
f(x)=-\mathscr{X}
$$

Linear functions

$$
f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}
$$

$$
f(x)=x^{2}
$$

$f(x)=\max (0, x)$
max is convex

Some ways to show that a function is convex:

1. Using the definition of convexity
2. Showing that the second derivative is positive (for one dimensional functions)
3. Showing that the second derivative is positive semi-definite (for vector functions)

Not all functions are convex

Convex functions are convenient

A function f is convex if for every $\boldsymbol{u}, \boldsymbol{v}$ in the domain, and for every $\lambda \in$ [0,1] we have

In general: Necessary condition for x to be a minimum for the function f is that the gradient $\nabla f(x)=0$

For convex functions, this is both necessary and sufficient

Solving the SVM optimization problem

$$
\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

This function is convex in w

- This is a quadratic optimization problem because the objective is quadratic
- Older methods: Used techniques from Quadratic Programming
- Very slow
- No constraints, can use gradient descent
- Still very slow!

We are trying to minimize

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for \mathbf{w}, say \mathbf{w}^{0}
- Iterate till convergence:
- Compute the gradient of the gradient of J at \mathbf{w}^{t}
- Update \mathbf{w}^{t} to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for \mathbf{w}, say \mathbf{w}^{0}
- Iterate till convergence:
- Compute the gradient of the gradient of J at \mathbf{w}^{t}
- Update \mathbf{w}^{t} to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for \mathbf{w}, say \mathbf{w}^{0}
- Iterate till convergence:
- Compute the gradient of the gradient of J at \mathbf{w}^{t}
- Update \mathbf{w}^{t} to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

Gradient descent

General strategy for minimizing a function $J(\mathbf{w})$

- Start with an initial guess for \mathbf{w}, say \mathbf{w}^{0}
- Iterate till convergence:
- Compute the gradient of the gradient of J at \mathbf{w}^{t}
- Update \mathbf{w}^{t} to get \mathbf{w}^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

Gradient descent for SVM

1. Initialize \mathbf{w}^{0}

$$
J(\mathbf{w})=\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i}^{\text {We are trying to minimize }} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

2. For $t=0,1,2, \ldots$.
3. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^{t}. Call it $\nabla J\left(\mathbf{w}^{t+1}\right)$
4. Update w as follows:

$$
\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t}-r \nabla J\left(\mathbf{w}^{t}\right)
$$

r : The learning rate .

Outline: Training SVM by optimization

\checkmark Review of convex functions and gradient descent
2. Stochastic gradient descent
3. Gradient descent vs stochastic gradient descent
4. Sub-derivatives of the hinge loss
5. Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

Gradient descent for SVM

1. Initialize \mathbf{w}^{0}

$$
J(\mathbf{w})=\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

2. For $t=0,1,2, \ldots$.
3. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^{t}. Call it $\nabla J\left(\mathbf{w}^{t+1}\right)$

Gradient of the SVM objective requires summing over the entire training set

Slow, does not really scale

$$
J(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1$... T:
3. Return final \mathbf{w}

$$
J(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1$... T:
3. Pick a random example $\left(\mathbf{x}_{i}, y_{i}\right)$ from the training set S
4. Return final \mathbf{w}

$$
J(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1$... T:
3. Pick a random example $\left(\mathbf{x}_{i}, y_{i}\right)$ from the training set S
4. Treat $\left(\mathbf{x}_{i}, y_{i}\right)$ as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1}. Call it $\nabla \hat{J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$
5. Return final \mathbf{w}

$$
J(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1$... T:
3. Pick a random example (\mathbf{x}_{i}, y_{i}) from the training set S
4. Treat $\left(\mathbf{x}_{i}, y_{i}\right)$ as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1}. Call it $\nabla \hat{J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$

$$
\hat{J}(\mathbf{w})=\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

3. Return final \mathbf{w}

$$
J(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1$... T:
3. Pick a random example (\mathbf{x}_{i}, y_{i}) from the training set S
4. Treat $\left(\mathbf{x}_{i}, y_{i}\right)$ as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1}. Call it $\nabla \hat{J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$

$$
\hat{J}(\mathbf{w})=\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

3. Update: $\mathbf{w}^{t} \leftarrow \mathbf{w}^{t-1}-\gamma_{t} \nabla \mathbf{J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$
4. Return final \mathbf{w}

$$
J(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1$... T:
3. Pick a random example $\left(\mathbf{x}_{i}, y_{i}\right)$ from the training set S
4. Treat $\left(\mathbf{x}_{i}, y_{i}\right)$ as a full dataset and take the derivative of the SVM objective \hat{J} at the current \mathbf{w}^{t-1}. Call it $\nabla \hat{J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$
5. Update: $\mathbf{w}^{t} \leftarrow \mathbf{w}^{t-1}-\gamma_{t} \nabla \mathrm{~J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$

3. Return final w

This algorithm is guaranteed to converge to the minimum of J if γ_{t} is small enough. Why? The objective $J(\mathbf{w})$ is a convex function

Outline: Training SVM by optimization

\checkmark Review of convex functions and gradient descent
\checkmark Stochastic gradient descent
3. Gradient descent vs stochastic gradient descent
4. Sub-derivatives of the hinge loss
5. Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

Gradient Descent vs SGD

Gradient descent

Gradient Descent vs SGD

Stochastic Gradient descent

Outline: Training SVM by optimization

\checkmark Review of convex functions and gradient descent
\checkmark Stochastic gradient descent
\checkmark Gradient descent vs stochastic gradient descent
4. Sub-derivatives of the hinge loss
5. Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

$$
J(\mathbf{w})=\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}\right)
$$

Stochastic gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}^{0}=0 \in \mathfrak{R}^{d}$
2. For epoch $=1 \ldots \mathrm{~T}$:
3. Pick a random example (\mathbf{x}_{i}, y_{i}) from the training set S
4. Treat $\left(\mathbf{x}_{i}, y_{i}\right)$ as a full dataset and take the derivative of the SVM objective at the current \mathbf{w}^{t-1} to be $\nabla \mathrm{J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$
5. Update: $\mathbf{w}^{t} \leftarrow \mathbf{w}^{t-1}-\gamma_{t} \nabla \mathrm{~J}\left(\mathbf{w}^{\mathrm{t}-1}\right)$
6. Return final \mathbf{w}

Hinge loss is not differentiable!

What is the derivative of the hinge loss with respect to w ?

$$
J(\mathbf{w})=\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+c \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

Detour: Sub-gradients

Generalization of gradients to non-differentiable functions
(Remember that every tangent is a hyperplane that lies below the function for convex functions)

Informally, a sub-tangent at a point is any hyperplane that lies below the function at the point.
A sub-gradient is the slope of that line

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

f is differentiable at x_{1}
Tangent at this point
$f\left(x_{1}\right)+g_{1}^{T}\left(x-x_{1}\right)$
g_{1} is a gradient at x_{1}

Sub-gradients

Formally, a vector g is a subgradient to f at point x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

f is differentiable at x_{1}
Tangent at this point
$f\left(x_{1}\right)+g_{1}^{T}\left(x-x_{1}\right)$

Sub-gradient of the SVM objective

$$
J^{t}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

General strategy: First solve the max and compute the gradient for each case

Sub-gradient of the SVM objective

$$
J^{t}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

General strategy: First solve the max and compute the gradient for each case

$$
\nabla J^{t}= \begin{cases}\mathbf{w} & \text { if } \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)=0 \\ \mathbf{w}-C y_{i} \mathbf{x}_{i} & \text { otherwise }\end{cases}
$$

Outline: Training SVM by optimization

\checkmark Review of convex functions and gradient descent
\checkmark Stochastic gradient descent
\checkmark Gradient descent vs stochastic gradient descent
\checkmark Sub-derivatives of the hinge loss
5. Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

Stochastic sub-gradient descent for SVM

$$
\nabla J^{t}= \begin{cases}\mathbf{w} & \text { if } \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)=0 \\ \mathbf{w}-C_{y_{i}} \mathbf{x}_{i} & \text { otherwise }\end{cases}
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \mathfrak{R}^{d}$
2. Return \mathbf{w}

Stochastic sub-gradient descent for SVM

$$
\nabla \cdot J^{t}= \begin{cases}\mathbf{w} & \text { if } \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)=0 \\ \mathbf{w}-C y_{i} \mathbf{x}_{i} & \text { otherwise }\end{cases}
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \mathfrak{R}^{d}$
2. For epoch = 1 ... T:
3. Return \mathbf{w}

Stochastic sub-gradient descent for SVM

$$
\nabla J^{t}= \begin{cases}\mathbf{w} & \text { if } \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)=0 \\ \mathbf{w}-C_{y_{i}} \mathbf{x}_{i} & \text { otherwise }\end{cases}
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \mathfrak{R}^{d}$
2. For epoch = 1 ... T:

For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:

$$
\text { Update } \mathbf{w} \leftarrow \mathbf{w}-\gamma_{t} \nabla J
$$

3. Return \mathbf{w}

Stochastic sub-gradient descent for SVM

$$
\nabla J^{t}= \begin{cases}\mathbf{w} & \text { if } \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)=0 \\ \mathbf{w}-C_{y_{i} \mathbf{x}_{i}} & \text { otherwise }\end{cases}
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \mathfrak{R}^{d}$
2. For epoch = 1 ... T:

For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:

$$
\begin{aligned}
& \text { If } y_{i} \mathbf{w}^{T} \mathbf{x}_{i} \leq 1: \\
& \quad \mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}+\gamma_{t} C y_{i} \mathbf{x}_{i}
\end{aligned}
$$

else:

$$
\mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}
$$

3. Return \mathbf{w}

Stochastic sub-gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \Re^{d}$
2. For epoch = 1 ... T:

For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:
γ_{t} : learning rate, many tweaks possible

$$
\text { If } y_{i} \mathbf{w}^{T} \mathbf{x}_{i} \leq 1 \text { : }
$$

$$
\mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}+\gamma_{t} C y_{i} \mathbf{x}_{i}
$$

else:

$$
\mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}
$$

3. Return \mathbf{w}

Stochastic sub-gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \mathfrak{R}^{d}$
2. For epoch = 1 ... T:

For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:

```
\(\gamma_{t}\) : learning rate, many tweaks possible
```

$$
\text { If } \begin{aligned}
y_{i} \mathbf{w}^{T} \mathbf{x}_{i} & \leq 1: \\
\quad \mathbf{w} & \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}+\gamma_{t} C y_{i} \mathbf{x}_{i}
\end{aligned}
$$

else:

$$
\mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}
$$

3. Return \mathbf{w}

Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are "square summable, but not summable"

- Step sizes γ_{t} are positive
- Sum of squares of step sizes over $t=1$ to 1 is not infinite
- Sum of step sizes over $t=1$ to 1 is infinity
- Some examples: $\gamma_{t}=\frac{\gamma_{0}}{1+\frac{\gamma_{0} t}{C}}$ or $\gamma_{t}=\frac{\gamma_{0}}{1+t}$

Convergence and learning rates

- Number of iterations to get to accuracy within ϵ
- For strongly convex functions, N examples, d dimensional:
- Gradient descent: $O\left(N d \ln \frac{1}{\epsilon}\right)$
- Stochastic gradient descent: $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge

Convergence and learning rates

- Number of iterations to get to accuracy within ϵ
- For strongly convex functions, N examples, d dimensional:
- Gradient descent: $O\left(N d \ln \frac{1}{\epsilon}\right)$
- Stochastic gradient descent: $O\left(\frac{d}{\epsilon}\right)$
- More subtleties involved, but SGD is generally preferable when the data size is huge
- Recently, many variants that are based on this general strategy
- Examples: Adagrad, momentum, Nesterov's accelerated gradient, Adam, RMSProp, etc...

Outline: Training SVM by optimization

\checkmark Review of convex functions and gradient descent
\checkmark Stochastic gradient descent
\checkmark Gradient descent vs stochastic gradient descent
\checkmark Sub-derivatives of the hinge loss
\checkmark Stochastic sub-gradient descent for SVM
6. Comparison to perceptron

Stochastic sub-gradient descent for SVM

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \quad \mathbf{x} \in \mathfrak{R}^{d}, y \in\{-1,1\}$

1. Initialize $\mathbf{w}=0 \in \Re^{d}$
2. For epoch = 1 ... T:

For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:

$$
\text { If } \begin{aligned}
& y_{i} \mathbf{w}^{T} \mathbf{x}_{i} \leq 1: \\
& \mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}+\gamma_{t} C y_{i} \mathbf{x}_{i}
\end{aligned}
$$

else:

$$
\mathbf{w} \leftarrow\left(1-\gamma_{t}\right) \mathbf{w}
$$

3. Return \mathbf{w}

Compare with the Perceptron update:
If $y_{i} \mathbf{W}^{T} \mathbf{x}_{i} \leq 0$, update $\mathbf{w} \leftarrow \mathbf{w}+\gamma_{t} y_{i} \mathbf{x}_{i}$

Perceptron vs. SVM

- Perceptron: Stochastic sub-gradient descent for a different loss
- No regularization though

$$
L_{\text {Perceptron }}(y, \mathbf{x}, \mathbf{w})=\max \left(0,-y \mathbf{w}^{T} \mathbf{x}\right)
$$

- SVM optimizes the hinge loss
- With regularization

$$
L_{\text {Hinge }}(y, \mathbf{x}, \mathbf{w})=\max \left(0,1-y \mathbf{w}^{T} \mathbf{x}\right)
$$

SVM summary from optimization perspective

- Minimize regularized hinge loss
- Solve using stochastic gradient descent
- Very fast, run time does not depend on number of examples
- Compare with Perceptron algorithm: Perceptron does not maximize margin width
- Perceptron variants can force a margin
- Convergence criterion is an issue; can be too aggressive in the beginning and get to a reasonably good solution fast; but convergence is slow for very accurate weight vector
- Other successful optimization algorithms exist
- Eg: Dual coordinate descent, implemented in liblinear

