
Attention in NLP

Overview

• What is attention?

• Attention in encoder-decoder networks

• Various kinds of attention

2

Overview

• What is attention?

• Attention in encoder-decoder networks

• Various kinds of attention

3

Visual attention

4
Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.

Keep your eyes fixed on the
star at the center of the image

Visual attention

5

Keep your eyes fixed on the
star at the center of the image

Now (without changing focus)
where is the black circle
containing a white square?

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.

Visual attention

6

Keep your eyes fixed on the
star at the center of the image

Next (without changing focus)
where is the black triangle
containing a white square?

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.

Visual attention

7

To answer the questions, you needed to check one object at a time.

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.

Visual attention

8

To answer the questions, you needed to check one object at a time.

If you were looking at the center of the image to answer the questions, then you
internally changed how to process the input without the input changing

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.

Visual attention

9

To answer the questions, you needed to check one object at a time.

If you were looking at the center of the image to answer the questions, then you
internally changed how to process the input without the input changing

In other words, you exercised your visual attention

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.

What is attention?

• All inputs may not need careful processing at all points of time

• Attention: A mechanism for selecting a subset of information for further analysis,
processing, or computation
– Focus on the most relevant information, and ignore the rest

• Widely studied in cognitive psychology, neuroscience and related fields
– Often seen in the context of visual information

10

What is attention?

• All inputs may not need careful processing at all points of time

• Attention: A mechanism for selecting a subset of information for further analysis,
processing, or computation
– Focus on the most relevant information, and ignore the rest

• Widely studied in cognitive psychology, neuroscience and related fields
– Often seen in the context of visual information

11

What to focus on is also a decision problem

Who makes that decision?

Overview

• What is attention?

• Attention in encoder-decoder networks

• Various kinds of attention

12

Attention in NLP

• Attention is widely used in various NLP applications

• First introduced in the context of encoder-decoder networks for machine translation

• Generally it takes the following form:
– We have a large input, but need to focus on only a small part

– An auxiliary network predicts a distribution over the input that decides the attention over its parts

– The output is the weighted sum of the attention and the input

13

Attention in NLP

• Attention is widely used in various NLP applications

• First introduced in the context of encoder-decoder networks for machine translation

• Generally it takes the following form:
– We have a large input, but need to focus on only a small part

– An auxiliary network predicts a distribution over the input that decides the attention over its parts

– The output is the weighted sum of the attention and the input

14

Example application: Machine Translation

Suppose we have to convert a Dutch sentence into its English translation

Piet de kinderen helpt zwemmen

Piet helped the children swim

15

Example application: Machine Translation

Suppose we have to convert a Dutch sentence into its English translation

Piet de kinderen helpt zwemmen

Piet helped the children swim

16

This requires us to consume a sequence and generate
a new one that means the same

Consuming and generating sequences

Recurrent neural networks as general sequence processors

• RNNs can encode a sequence into sequence of state vectors

• RNNs can generate sequences starting with an initial input
– And can even take inputs at each step to guide the generation

17

The encoder-decoder approach

Encode the input using an RNN till a special end-of-input token is reached
 (Could be a bi-directional RNN)

18

Piet de kinderen helpt zwemmen </s>

[Sutskever, et al 2014, Cho et al 2014]

The encoder-decoder approach

Encode the input using an RNN till a special end-of-input token is reached
 (Could be a bi-directional RNN)

Then generate the output using a different RNN – the decoder

19

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

[Sutskever, et al 2014, Cho et al 2014]

The encoder-decoder approach

Encode the input using an RNN till a special end-of-input token is reached
 (Could be a bi-directional RNN)

Then generate the output using a different RNN – the decoder
The decoder produces probabilities over the output sequence words

20

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

[Sutskever, et al 2014, Cho et al 2014]

The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders?

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs are being

produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated
search algorithm that entertains multiple sequences to find the overall best sequence?

21

The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders?

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs are being

produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated
search algorithm that entertains multiple sequences to find the overall best sequence?

22

The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders?

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs are being

produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated
search algorithm that entertains multiple sequences to find the overall best sequence?

23

The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders?

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs are being

produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated
search algorithm that entertains multiple sequences to find the overall best sequence?

24

The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders?

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs are being

produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated
search algorithm that entertains multiple sequences to find the overall best sequence?

25

The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders?

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs

are being produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated search
algorithm that entertains multiple sequences to find the overall best sequence?

26

The encoded input

Suppose we have a fixed encoding vector (e.g. the hidden final states of the bi-LSTM
in both directions)

What information should it contain?
– Information about the entire input sentence
– After each word is generated, it should somehow help keep track of what information

from the input is yet to be covered

In practice: such a simple encoder-decoder network works for short sentences (10-
15 words)
 Needs other modeling refinements to improve beyond this

27

The encoded input

Suppose we have a fixed encoding vector (e.g. the hidden final states of the bi-LSTM
in both directions)

What information should it contain?
– Information about the entire input sentence
– After each word is generated, it should somehow help keep track of what information

from the input is yet to be covered

In practice: such a simple encoder-decoder network works for short sentences (10-
15 words)
 Needs other modeling refinements to improve beyond this

28

The encoded input

Suppose we have a fixed encoding vector (e.g. the hidden final states of the bi-LSTM
in both directions)

What information should it contain?
– Information about the entire input sentence
– After each word is generated, it should somehow help keep track of what information

from the input is yet to be covered

In practice: such a simple encoder-decoder network works for short sentences (10-
15 words)
 Needs other modeling refinements to improve beyond this

29

Adding attention to the decoder

• Deciding on each output word does not depend on all input words

• Instead, if we can dynamically attend over the inputs for each output, then the
decision of which output word to generate could be more targeted

• Let’s build such a model from scratch

30

[Bahdanau, 2014]

Step 1: The encoder

• Input sequence of words: 𝑥!, 𝑥", ⋯
– Assume that the we have special start and end tokens

• Bidirectional RNN (usually LSTM) encodes the sequence to produce a sequence of
hidden states

𝐡# = 𝐡$, 𝐡# = 𝐵𝑖𝑅𝑁𝑁 𝑥!, 𝑥", ⋯

31

Step 1: The encoder

• Input sequence of words: 𝑥!, 𝑥", ⋯
– Assume that the we have special start and end tokens

• Bidirectional RNN (usually LSTM) encodes the sequence to produce a sequence of
hidden states

𝐡# = 𝐡$, 𝐡# = 𝐵𝑖𝑅𝑁𝑁 𝑥!, 𝑥", ⋯

32

Concatenated states from the
left and right RNNs

Step 2: The decoder

• Suppose the output words are 𝑦!, 𝑦", ⋯

• For the 𝑖#$ output word, suppose we summarize the input into a vector 𝐜%
– We will look at what this vector is very soon

• The probability of 𝑖#$ output word depends on
– The previous word generated 𝑦%&!
– The hidden state of the decoder, say 𝐬%&!
– And the input summary 𝐜%

softmax(𝑊'𝑦%&! +𝑊$𝐬%&! +𝑊(𝐜% + 𝑏)	

33

Step 2: The decoder

• Suppose the output words are 𝑦!, 𝑦", ⋯

• For the 𝑖#$ output word, suppose we summarize the input into a vector 𝐜%
– We will look at what this vector is very soon

• The probability of 𝑖#$ output word depends on
– The previous word generated 𝑦%&!
– The hidden state of the decoder, say 𝐬%&!
– And the input summary 𝐜%

softmax(𝑊'𝑦%&! +𝑊$𝐬%&! +𝑊(𝐜% + 𝑏)	

34

The previous word is represented by its embedding

Step 2: The decoder

• Suppose the output words are 𝑦!, 𝑦", ⋯

• For the 𝑖#$ output word, suppose we summarize the input into a vector 𝐜%
– We will look at what this vector is very soon

• The probability of 𝑖#$ output word depends on
– The previous word generated 𝑦%&!
– The hidden state of the decoder, say 𝐬%&!
– And the input summary 𝐜%

softmax(𝑊'𝑦%&! +𝑊$𝐬%&! +𝑊(𝐜% + 𝑏)	

35

Step 2: The decoder

• Suppose the output words are 𝑦!, 𝑦", ⋯

• For the 𝑖#$ output word, suppose we summarize the input into a vector 𝐜%
– We will look at what this vector is very soon

• The probability of 𝑖#$ output word depends on
– The previous word generated 𝑦%&!
– The hidden state of the decoder, say 𝐬%&!
– And the input summary 𝐜%

softmax(𝑊'𝑦%&! +𝑊$𝐬%&! +𝑊(𝐜% + 𝑏)	

36

Step 2: The decoder

• Suppose the output words are 𝑦!, 𝑦", ⋯

• For the 𝑖#$ output word, suppose we summarize the input into a vector 𝐜%
– We will look at what this vector is very soon

• The probability of 𝑖#$ output word depends on
– The previous word generated 𝑦%&!
– The hidden state of the decoder, say 𝐬%&!
– And the input summary 𝐜%

softmax(𝑊'𝑦%&! +𝑊$𝐬%&! +𝑊(𝐜% + 𝑏)	

37

Probability over all the target words

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

38

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

39

Piet

Piet de kinderen helpt zwemmen </s>

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

40

Piet helped

Piet de kinderen helpt zwemmen </s>

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

41

Piet helped

Piet de kinderen helpt zwemmen </s>

the

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

42

Piet helped

Piet de kinderen helpt zwemmen </s>

the children

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

43

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

44

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

𝐜%

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

At each step, this can be seen as a decision: Which word is currently relevant?

45

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

At each step, this can be seen as a decision: Which word is currently relevant?

Instead of a hard decision, we can ask for a soft decision: a probability

46

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

47

Let’s see how we can construct the
encoding using such a mechanism

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

48

1. Attention over input words: A number
for the 𝑗#$ input word

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

49

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎 𝑠%&!, ℎ) = 𝑊*𝑠%&! +𝑊+ℎ) + 𝑏

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

50

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎 𝑠%&!, ℎ) = 𝑊*𝑠%&! +𝑊+ℎ) + 𝑏

A score that depends on the current state of
the decoder and the word encodings

Characterizes how important the 𝑗!" input
word is at this point

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

51

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎 𝑠%&!, ℎ) = 𝑊*𝑠%&! +𝑊+ℎ) + 𝑏

A score that depends on the current state of
the decoder and the word encodings

Characterizes how important the 𝑗!" input
word is at this point

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Depends on the decoder

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

52

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎 𝑠%&!, ℎ) = 𝑊*𝑠%&! +𝑊+ℎ) + 𝑏

A score that depends on the current state of
the decoder and the word encodings

Characterizes how important the 𝑗!" input
word is at this point

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>
Depends on the encoder

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

53

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎 𝑠%&!, ℎ) = 𝑊*𝑠%&! +𝑊+ℎ) + 𝑏

𝑎%) =
exp 𝑎 𝑠%&!, ℎ) 	

∑, exp 𝑎 𝑠%&!, ℎ,
Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Convert the score into a probability by taking softmax
over the inputs

What we have: A distribution over inputs at each step of
the decoder

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

54

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎 𝑠%&!, ℎ) = 𝑊*𝑠%&! +𝑊+ℎ) + 𝑏

𝑎%) =
exp 𝑎 𝑠%&!, ℎ) 	

∑, exp 𝑎 𝑠%&!, ℎ,

Convert the score into a probability by taking softmax
over the inputs

What we have: A distribution over inputs at each step of
the decoder

Think of this as:
𝑃 𝑡ℎe	𝑗!"	input	is	relevant 𝑖 − 1	outputs	have	been	generated

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

55

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎%) =
exp 𝑎 𝑠%&!, ℎ) 	

∑, exp 𝑎 𝑠%&!, ℎ,

2. Attended encoding: At each step

𝐜% =<
)

𝑎%)𝐡)

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

56

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎%) =
exp 𝑎 𝑠%&!, ℎ) 	

∑, exp 𝑎 𝑠%&!, ℎ,

2. Attended encoding: At each step

𝐜% =<
)

𝑎%)𝐡)

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

A weighted average of the input encodings

What happens if the 𝑎# is a one-hot vector?

Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜# should highlight information about the input words that
is being translated

57

1. Attention over input words: A number
for the 𝑗#$ input word

𝑎%) =
exp 𝑎 𝑠%&!, ℎ) 	

∑, exp 𝑎 𝑠%&!, ℎ,

2. Attended encoding: At each step

𝐜% =<
)

𝑎%)𝐡)

A weighted average of the input encodings

What happens if the 𝑎# is a one-hot vector?

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

Overview

• What is attention?

• Attention in encoder-decoder networks

• Various kinds of attention

58

General idea of attention

• Given a prediction problem whose inputs consist of many sub-components
– The sub-components may be encoded (e.g. with word embeddings, hidden states of RNNs)
– Or they may be the intermediate nodes in a larger network
– We will refer to these as 𝐡!, 𝐡", ⋯𝐡-

• We have a summary of a current state of the system
– Represents the context under which we need to find attention
– Refer to this as 𝐬

• The goal: Find a distribution over the 𝐡!, 𝐡", ⋯𝐡-	that captures how relevant each of them are in the
current state

Attention = softmax score 𝐡!, 𝐬 , score 𝐡", 𝐬 ,⋯ , score 𝐡., 𝐬

59

General idea of attention

• Given a prediction problem whose inputs consist of many sub-components
– The sub-components may be encoded (e.g. with word embeddings, hidden states of RNNs)
– Or they may be the intermediate nodes in a larger network
– We will refer to these as 𝐡!, 𝐡", ⋯𝐡-

• We have a summary of a current state of the system
– Represents the context under which we need to find attention
– Refer to this as 𝐬

• The goal: Find a distribution over the 𝐡!, 𝐡", ⋯𝐡-	that captures how relevant each of them are in the
current state

Attention = softmax score 𝐡!, 𝐬 , score 𝐡", 𝐬 ,⋯ , score 𝐡., 𝐬

60

General idea of attention

• Given a prediction problem whose inputs consist of many sub-components
– The sub-components may be encoded (e.g. with word embeddings, hidden states of RNNs)
– Or they may be the intermediate nodes in a larger network
– We will refer to these as 𝐡!, 𝐡", ⋯𝐡-

• We have a summary of a current state of the system
– Represents the context under which we need to find attention
– Refer to this as 𝐬

• The goal: Find a distribution over the 𝐡!, 𝐡", ⋯𝐡-	that captures how relevant each of them are in the
current state

Attention = softmax score 𝐡!, 𝐬 , score 𝐡", 𝐬 ,⋯ , score 𝐡., 𝐬

61

General idea of attention

• Given a prediction problem whose inputs consist of many sub-components
– The sub-components may be encoded (e.g. with word embeddings, hidden states of RNNs)
– Or they may be the intermediate nodes in a larger network
– We will refer to these as 𝐡!, 𝐡", ⋯𝐡-

• We have a summary of a current state of the system
– Represents the context under which we need to find attention
– Refer to this as 𝐬

• The goal: Find a distribution over the 𝐡!, 𝐡", ⋯𝐡-	that captures how relevant each of them are in the
current state

Attention = softmax score 𝐡!, 𝐬 , score 𝐡", 𝐬 ,⋯ , score 𝐡., 𝐬

62

Sometimes this is called the source sequence

What we saw so far: Additive attention

1. Compute a score for each sub-component of the input
𝑎 𝐬, 𝐡' = W(𝐬 +𝑊)𝐡' + 𝑏

63

What we saw so far: Additive attention

1. Compute a score for each sub-component of the input
𝑎 𝐬, 𝐡' = W(𝐬 +𝑊)𝐡' + 𝑏

2. Normalize with softmax to get attention

Attention	𝑎' =
exp 𝑎 𝐬, 𝐡'
∑* exp 𝑎 𝐬, 𝐡*

64

What we saw so far: Additive attention

1. Compute a score for each sub-component of the input
𝑎 𝐬, 𝐡' = W(𝐬 +𝑊)𝐡' + 𝑏

2. Normalize with softmax to get attention

Attention	𝑎' =
exp 𝑎 𝐬, 𝐡'
∑* exp 𝑎 𝐬, 𝐡*

65

Why should the score be additive?
Maybe other functions are possible

Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

66

We have already seen this

Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

Dot product 𝐬0𝐡𝐣 Luong et al 2015

Generalized dot product 𝐬0W𝐡𝐣 Luong et al 2015

67

Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

Dot product 𝐬0𝐡𝐣 Luong et a l2015

Generalized dot product 𝐬0W𝐡𝐣 Luong et al 2015

Scaled dot product 𝐬0𝐡𝐣
√n

Vaswani et al 2017

68

We will see this in more detail when we visit Transformers

Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

Dot product 𝐬0𝐡𝐣 Luong et a l2015

Generalized dot product 𝐬0W𝐡𝐣 Luong et al 2015

Scaled dot product 𝐬0𝐡𝐣
√n

Vaswani et al 2017

69

In all cases, after the scoring function is applied, we have a
softmax to produce the attention probability

Hard vs soft attention

• Attention is a probability over the input sub-components
– How relevant is each component in the context of a state s?
– Also called soft attention

• What if there are many sub-components?
– Needs an expensive softmax
– Can we avoid this?

• Hard attention: Select one of the components – the argmax
– Less computation
– But not differentiable. Involves reinforcement learning for training

70

Hard vs soft attention

• Attention is a probability over the input sub-components
– How relevant is each component in the context of a state s?
– Also called soft attention

• What if there are many sub-components?
– Needs an expensive softmax
– Can we avoid this?

• Hard attention: Select one of the components – the argmax
– Less computation
– But not differentiable. Involves reinforcement learning for training

71

Hard vs soft attention

• Attention is a probability over the input sub-components
– How relevant is each component in the context of a state s?
– Also called soft attention

• What if there are many sub-components?
– Needs an expensive softmax
– Can we avoid this?

• Hard attention: Select one of the components – the argmax
– Less computation
– But not differentiable. How should this be trained?

72

Self-attention

• So far: We have a sequence of inputs and a separate description of the current
state
– We want to compute attention over the inputs

• Suppose the “current” state is an element of the sequence itself
– And we repeat this for each element
– In our notation from before, 𝐬 is one of the 𝐡:’s

• Intuition: Compute attention over a sentence with respect to each word in the
sentence
– Captures interactions between the words of a sentence

73

Also called intra-attention

Self-attention

• So far: We have a sequence of inputs and a separate description of the current
state
– We want to compute attention over the inputs

• Suppose the “current” state is an element of the sequence itself
– And we repeat this for each element
– In our notation from before, 𝐬 is one of the 𝐡:’s

• Intuition: Compute attention over a sentence with respect to each word in the
sentence
– Captures interactions between the words of a sentence

74

Also called intra-attention

Self-attention

• So far: We have a sequence of inputs and a separate description of the current
state
– We want to compute attention over the inputs

• Suppose the “current” state is an element of the sequence itself
– And we repeat this for each element
– In our notation from before, 𝐬 is one of the 𝐡:’s

• Intuition: Compute attention over a sentence with respect to each word in the
sentence
– Captures interactions between the words of a sentence

75

Also called intra-attention

Self-attention example

76

Cheng et al 2016

Why is self-attention interesting?

• Allows for contextual encoding of words
– Weighted average of the attended word encodings

• Unlike a recurrent neural network, there is no sequential dependencies
– Better parallelism for contextual encodings

• Forms the basis of the Transformer architecture which we will see next

77

