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• What is attention?

• Attention in encoder-decoder networks
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Visual attention

4
Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.
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Keep your eyes fixed on the 
star at the center of the image

Now (without changing focus) 
where is the black circle 
containing a white square?

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.



Visual attention
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Keep your eyes fixed on the 
star at the center of the image

Next (without changing focus) 
where is the black triangle 
containing a white square?

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.



Visual attention
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To answer the questions, you needed to check one object at a time.

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.
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To answer the questions, you needed to check one object at a time.

If you were looking at the center of the image to answer the questions, then you 
internally changed how to process the input without the input changing

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.



Visual attention
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To answer the questions, you needed to check one object at a time.

If you were looking at the center of the image to answer the questions, then you 
internally changed how to process the input without the input changing

In other words, you exercised your visual attention

Wolfe J. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335-386.



What is attention?

• All inputs may not need careful processing at all points of time

• Attention: A mechanism for selecting a subset of information for further analysis, 
processing, or computation
– Focus on the most relevant information, and ignore the rest

• Widely studied in cognitive psychology, neuroscience and related fields
– Often seen in the context of visual information 
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What to focus on is also a decision problem

Who makes that decision?



Overview 

• What is attention?

• Attention in encoder-decoder networks

• Various kinds of attention
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Attention in NLP

• Attention is widely used in various NLP applications

• First introduced in the context of encoder-decoder networks for machine translation

• Generally it takes the following form:
– We have a large input, but need to focus on only a small part

– An auxiliary network predicts a distribution over the input that decides the attention over its parts

– The output is the weighted sum of the attention and the input
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Example application: Machine Translation

Suppose we have to convert a Dutch sentence into its English translation

Piet de kinderen helpt zwemmen 

Piet helped the children swim
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This requires us to consume a sequence and generate 
a new one that means the same 



Consuming and generating sequences

Recurrent neural networks as general sequence processors

• RNNs can encode a sequence into sequence of state vectors

• RNNs can generate sequences starting with an initial input
– And can even take inputs at each step to guide the generation

17



The encoder-decoder approach

Encode the input using an RNN till a special end-of-input token is reached
 (Could be a bi-directional RNN)

18

Piet de kinderen helpt zwemmen </s>

[Sutskever, et al 2014, Cho et al 2014]
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The encoder-decoder approach

Encode the input using an RNN till a special end-of-input token is reached
 (Could be a bi-directional RNN)

Then generate the output using a different RNN – the decoder
The decoder produces probabilities over the output sequence words

20

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

[Sutskever, et al 2014, Cho et al 2014]



The encoder-decoder model: Design choices

• What RNN cell to use? Multiple layers of encoders? 

• In what order should the inputs be consumed? In what order should the outputs be generated?
– Eg: The decoder could produce the output in reverse order

• How to summarize the input sequence using the RNN?
– Should the summary be static? Or should it be dynamically be changed as outputs are being 

produced?

• Should the output words be chosen greedily one at a time? Or should we use a more sophisticated 
search algorithm that entertains multiple sequences to find the overall best sequence?
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The encoded input

Suppose we have a fixed encoding vector (e.g. the hidden final states of the bi-LSTM 
in both directions)

What information should it contain?
– Information about the entire input sentence
– After each word is generated, it should somehow help keep track of what information 

from the input is yet to be covered

In practice: such a simple encoder-decoder network works for short sentences (10-
15 words)
 Needs other modeling refinements to improve beyond this
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Adding attention to the decoder

• Deciding on each output word does not depend on all input words

• Instead, if we can dynamically attend over the inputs for each output, then the 
decision of which output word to generate could be more targeted

• Let’s build such a model from scratch

30

[Bahdanau, 2014]



Step 1: The encoder

• Input sequence of words: 𝑥!, 𝑥", ⋯
– Assume that the we have special start and end tokens

• Bidirectional RNN (usually LSTM) encodes the sequence to produce a sequence of 
hidden states

𝐡# = 𝐡$, 𝐡# = 𝐵𝑖𝑅𝑁𝑁 𝑥!, 𝑥", ⋯
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Concatenated states from the 
left and right RNNs



Step 2: The decoder

• Suppose the output words are 𝑦!, 𝑦", ⋯

• For the 𝑖#$ output word, suppose we summarize the input into a vector 𝐜%
– We will look at what this vector is very soon

•  The probability of 𝑖#$ output word depends on
– The previous word generated 𝑦%&!
– The hidden state of the decoder, say 𝐬%&!
– And the input summary 𝐜%

softmax(𝑊'𝑦%&! +𝑊$𝐬%&! +𝑊(𝐜% + 𝑏)	
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The previous word is represented by its embedding
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Probability over all the target words



Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜#  should highlight information about the input words that 
is being translated 

38

Piet helped

Piet de kinderen helpt zwemmen </s>

the children swim </s>

𝐜%
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Summarizing inputs for generating outputs
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Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜#  should highlight information about the input words that 
is being translated 
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Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜#  should highlight information about the input words that 
is being translated

At each step, this can be seen as a decision: Which word is currently relevant?
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Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜#  should highlight information about the input words that 
is being translated

At each step, this can be seen as a decision: Which word is currently relevant?

Instead of a hard decision, we can ask for a soft decision: a probability

46
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Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜#  should highlight information about the input words that 
is being translated

47

Let’s see how we can construct the 
encoding using such a mechanism

Piet helped
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Summarizing inputs for generating outputs

At the 𝑖%& step, the vector 𝐜#  should highlight information about the input words that 
is being translated

48

1. Attention over input words: A number 
for the 𝑗#$ input word 
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• Attention in encoder-decoder networks
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General idea of attention

• Given a prediction problem whose inputs consist of many sub-components
– The sub-components may be encoded (e.g. with word embeddings, hidden states of RNNs)
– Or they may be the intermediate nodes in a larger network
– We will refer to these as 𝐡!, 𝐡", ⋯𝐡-

• We have a summary of a current state of the system
– Represents the context under which we need to find attention
– Refer to this as 𝐬

• The goal: Find a distribution over the 𝐡!, 𝐡", ⋯𝐡-	that captures how relevant each of them are in the 
current state

Attention = softmax score 𝐡!, 𝐬 , score 𝐡", 𝐬 ,⋯ , score 𝐡., 𝐬
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Sometimes this is called the source sequence



What we saw so far: Additive attention

1. Compute a score for each sub-component of the input
𝑎 𝐬, 𝐡' = W(𝐬 +𝑊)𝐡' + 𝑏
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Why should the score be additive? 
Maybe other functions are possible



Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015
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We have already seen this



Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

Dot product 𝐬0𝐡𝐣 Luong et al 2015

Generalized dot product 𝐬0W𝐡𝐣 Luong et al 2015
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Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

Dot product 𝐬0𝐡𝐣 Luong et a l2015

Generalized dot product 𝐬0W𝐡𝐣 Luong et al 2015

Scaled dot product 𝐬0𝐡𝐣
√n

Vaswani et al 2017
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We will see this in more detail when we visit Transformers



Different scoring functions for attention

Name Scoring function 𝑎 𝐬, 𝐡) Reference

Additive attention 𝑊𝐚𝐬 +𝑊+𝐡) + 𝑏 Bahdanau et al 2015

Dot product 𝐬0𝐡𝐣 Luong et a l2015

Generalized dot product 𝐬0W𝐡𝐣 Luong et al 2015

Scaled dot product 𝐬0𝐡𝐣
√n

Vaswani et al 2017
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In all cases, after the scoring function is applied, we have a 
softmax to produce the attention probability



Hard vs soft attention

• Attention is a probability over the input sub-components
– How relevant is each component in the context of a state s?
– Also called soft attention

• What if there are many sub-components?
– Needs an expensive softmax
– Can we avoid this?

• Hard attention: Select one of the components – the argmax
– Less computation
– But not differentiable. Involves reinforcement learning for training
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Hard vs soft attention

• Attention is a probability over the input sub-components
– How relevant is each component in the context of a state s?
– Also called soft attention

• What if there are many sub-components?
– Needs an expensive softmax
– Can we avoid this?

• Hard attention: Select one of the components – the argmax
– Less computation
– But not differentiable. How should this be trained?
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Self-attention 

• So far: We have a sequence of inputs and a separate description of the current 
state
– We want to compute attention over the inputs

• Suppose the “current” state is an element of the sequence itself
– And we repeat this for each element
– In our notation from before, 𝐬 is one of the 𝐡:’s 

• Intuition: Compute attention over a sentence with respect to each word in the 
sentence
– Captures interactions between the words of a sentence
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Also called intra-attention
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• So far: We have a sequence of inputs and a separate description of the current 
state
– We want to compute attention over the inputs

• Suppose the “current” state is an element of the sequence itself
– And we repeat this for each element
– In our notation from before, 𝐬 is one of the 𝐡:’s 

• Intuition: Compute attention over a sentence with respect to each word in the 
sentence
– Captures interactions between the words of a sentence

75

Also called intra-attention



Self-attention example

76

Cheng et al 2016



Why is self-attention interesting?

• Allows for contextual encoding of words
– Weighted average of the attended word encodings

• Unlike a recurrent neural network, there is no sequential dependencies
– Better parallelism for contextual encodings

• Forms the basis of the Transformer architecture which we will see next
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