
Neural Networks 
and 

Computation Graphs

Based on slides and material from Geoffrey Hinton, Richard Socher, Yoav Goldberg, Chris Dyer, Graham Neubig and others.



This lecture

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass
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This section heavily draws upon the “Practical Neural Networks for NLP” by Chris Dyer, Yoav Goldberg, Graham Neubig in EMNLP 2016



Computation graphs

A language for constructing deep neural networks
– A way to think about differentiable compute

Key ideas: 
– We can represent functions as graphs
– We can dynamically generate these graphs if necessary
– We can define algorithms over these graphs that map to learning and prediction

• Prediction via the forward pass
• Learning via gradients computed using the backward pass
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What we will see

1. Tensors

2. What is the semantics of a computation graph?
– That is, what the nodes and edges mean

3. How to construct them

4. How do perform computations with them
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Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think 

“multi-dimensional arrays”
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Scalars (i.e., numbers) are tensors with 
zero dimensions. 3, -1, 1.1, …

Why zero dimensions? Because we 
need zero indices to find only element 
contained in it 
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Vectors are one dimensional tensors:
 [1,2,3], [-11.3, 0], …

Why one dimensional? Because we need one 
index to address any element in the vector

The shape of this tensor is 6.
It is a six dimensional vector.
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Matrices are two dimensional tensors

Why two dimensional? Because we need two indexes  
to address any element in it

The shape of this tensor is (4, 3). It is a 4×3 matrix.
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This is a three dimensional tensor. We need 
three indexes  to address any element in it.

Its shape is (4, 3, 3)
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And so on… 



Operations on tensors

Indexing to obtain sub-tensors (or scalars). Examples:

– 𝑥 𝑖 ,𝑀 𝑖, 𝑗 , 𝐴 𝑖, 𝑗, 𝑘 , … (sometimes written using subscripts): Look up an entry in a 
vector 𝑥 or a matrix 𝑀 or a 3-dimensional tensor 𝐴

– 𝑀 𝑖, :  (using numpy notation): Lookup the 𝑖!" row of the matrix 𝑀

– 𝐴 𝑖, : , :  (using numpy notation): Lookup the 𝑖!" slice of tensor 𝐴 to produce a matrix

– 𝑇 : , : , : , 𝑖  (using numpy notation): Lookup the 𝑖!" sub-tensor of a 4-dimensional 𝑇 to 
produce a 3-dimensional tensor
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Operations on tensors

Tensors of the same shape can be:
• Added: Add the corresponding elements

• Multiplied element-wise: Multiply corresponding elements

• …any binary operation on numbers can be applied elementwise
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Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×( , 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]
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Sometimes this is called Tensor Mode-n Multiplication
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Sometimes this is called Tensor Mode-n Multiplication

This is just matrix-matrix multiplication
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Sometimes this is called Tensor Mode-n Multiplication



Operations on tensors

Elementwise operations: Apply some function to each element of the 
tensor
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0 -3

1 2

-2 -1

0 3

1 2

2 1

0 9

1 4

4 1

Elementwise square

Elementwise absolute value



Operations on tensors

Reshape: Re-organize the numbers in the tensor to produce a tensor of a 
different shape and/or dimensionality
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4

3.5

1.2

-3

9

-1

4 -3

3.5 9

1.2 -1

A 6 dimensional tensor reshaped to a 3×2 matrix



There is a lot more about tensors that you can learn by 
doing

19



What we will see

1. Tensors

2. What is the semantics of a computation graph?
– That is, what the nodes and edges mean

3. How to construct them

4. How do perform computations with them
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Nodes represent values

21

Expression 𝐱

𝐱

Graph

The value is implicitly or explicitly typed.

It could represent a 
• Scalar (i.e. a number)
• A vector
• A matrix
• Or more generally, a tensor



Edges represent function arguments
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𝐱

| 𝐱 |
f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲
f 𝐮, 𝐯 = 𝐮!𝐯

𝐲

A node with an incoming edge is a function of the the parent node



Edges represent function arguments
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𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲

A node with an incoming edge is a function of the the parent node

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮!𝐯



Edges represent function arguments
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𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲

A node with an incoming edge is a function of the the parent node

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮!𝐯



Edges represent function arguments
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𝐱

𝐱!𝐲

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples,  the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯
 

𝐱

| 𝐱 |

Notation: We will write down what that function is next to the node.

When we write this, we will use formal arguments (here, the 𝐮 and 𝐯). Think 
of these as similar to the argument names we use when we declare 
functions while programming. 

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮!𝐯



Edges represent function arguments
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𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮!𝐯

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples,  the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯
 



Graphs represent functions
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𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮!𝐯

𝐲

The functions expressed could be 
• Nullary, i.e. with no arguments: if a node has no incoming edges
• Unary: if a node has one incoming edge
• Binary: if a node has two incoming edges
• …
• n-ary: if a node has n incoming edges



Let’s see some functions as graphs
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Expression 𝐱!𝐀

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

We could have written the same 
function with a different graph.

Computation graphs are not 
necessarily unique for a function



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent

𝜕𝑓
𝜕𝐮 = 𝐌! +𝐌 𝐮

Derivative with 
respect to this 
parent



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent

𝜕𝑓
𝜕𝐌 = 𝐮𝐮#

Derivative with 
respect to this 

parent



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know 
how to compute derivatives with 
respect to each parent

Together, we can compute 
derivatives of any function with 
respect to all its inputs, for any value 
of the input

𝜕𝑓
𝜕𝐮 = 𝐌! +𝐌 𝐮

𝜕𝑓
𝜕𝐌 = 𝐮𝐮#

𝜕𝑓
𝜕𝐱 = 𝐀! + 𝐀 𝐱 𝜕𝑓

𝜕𝐀 = 𝐱𝐱#



Let’s see some functions as graphs
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Expression 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

f 𝑥$, 𝑥%, 𝑥& =4
𝒊

𝑥(



Let’s see some functions as graphs
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Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥%, 𝑥& =4
𝒊

𝑥(



Let’s see some functions as graphs

37

Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥%, 𝑥& =4
𝒊

𝑥(

We can name variables by labeling nodes



Why are computation graphs interesting?

1. For starters, we can write neural networks as computation graphs.

2. We can write loss functions as computation graphs.
Or loss functions within the innermost stochastic gradient descent.

3. They are plug-and-play: We can construct a graph and use it in a program 
that someone else wrote

For eg: We can write down a neural network and plug it into a loss function and a 
minimization function from a library

4. They allow efficient gradient computation.
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Libraries like PyTorch and 
TensorFlow help construct 
computation graphs



An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚



An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)



An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

This is called nn.Linear 
in PyTorch



An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝐲𝐟 𝐮, 𝐯 = 𝐮 + 𝐯



Exercises 

Write the following functions as computation graphs:

• 𝑓 𝑥 = 𝑥! − log(𝑥)

• 𝑓 𝑥 = "
"#$%&(())

• 𝑓 w, x, 𝑦 = max(0, 1 − 𝑦w+x)	

• min
,

"
-
w.w+ 𝐶 ∑/max(0, 1 − 𝑦/w+𝑥/)
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