
Neural Networks
and

Computation Graphs

Based on slides and material from Geoffrey Hinton, Richard Socher, Yoav Goldberg, Chris Dyer, Graham Neubig and others.

This lecture

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass

1

This lecture

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass

2
This section heavily draws upon the “Practical Neural Networks for NLP” by Chris Dyer, Yoav Goldberg, Graham Neubig in EMNLP 2016

Computation graphs

A language for constructing deep neural networks
– A way to think about differentiable compute

Key ideas:
– We can represent functions as graphs
– We can dynamically generate these graphs if necessary
– We can define algorithms over these graphs that map to learning and prediction

• Prediction via the forward pass
• Learning via gradients computed using the backward pass

3

What we will see

1. Tensors

2. What is the semantics of a computation graph?
– That is, what the nodes and edges mean

3. How to construct them

4. How do perform computations with them

4

What we will see

1. Tensors

2. What is the semantics of a computation graph?
– That is, what the nodes and edges mean

3. How to construct them

4. How do perform computations with them

5

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

6

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

7

Scalars (i.e., numbers) are tensors with
zero dimensions. 3, -1, 1.1, …

Why zero dimensions? Because we
need zero indices to find only element
contained in it

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

8

Vectors are one dimensional tensors:
 [1,2,3], [-11.3, 0], …

Why one dimensional? Because we need one
index to address any element in the vector

The shape of this tensor is 6.
It is a six dimensional vector.

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

9

Matrices are two dimensional tensors

Why two dimensional? Because we need two indexes
to address any element in it

The shape of this tensor is (4, 3). It is a 4×3 matrix.

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

10

This is a three dimensional tensor. We need
three indexes to address any element in it.

Its shape is (4, 3, 3)

Tensors: A quick primer

Tensors generalize vectors and matrices
– For the most part (in what we will see), whenever you see tensor, you can think

“multi-dimensional arrays”

11

And so on…

Operations on tensors

Indexing to obtain sub-tensors (or scalars). Examples:

– 𝑥 𝑖 ,𝑀 𝑖, 𝑗 , 𝐴 𝑖, 𝑗, 𝑘 , … (sometimes written using subscripts): Look up an entry in a
vector 𝑥 or a matrix 𝑀 or a 3-dimensional tensor 𝐴

– 𝑀 𝑖, : (using numpy notation): Lookup the 𝑖!" row of the matrix 𝑀

– 𝐴 𝑖, : , : (using numpy notation): Lookup the 𝑖!" slice of tensor 𝐴 to produce a matrix

– 𝑇 : , : , : , 𝑖 (using numpy notation): Lookup the 𝑖!" sub-tensor of a 4-dimensional 𝑇 to
produce a 3-dimensional tensor

12

Operations on tensors

Tensors of the same shape can be:
• Added: Add the corresponding elements

• Multiplied element-wise: Multiply corresponding elements

• …any binary operation on numbers can be applied elementwise

13

Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×(, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]

14

Sometimes this is called Tensor Mode-n Multiplication

Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×(, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]

15

Sometimes this is called Tensor Mode-n Multiplication

This is just matrix-matrix multiplication

Operations on tensors

Tensors can be multiplied using a generalization of matrix multiplication

Suppose we have 𝐴 ∈ ℜ#×%, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑘] =3
'

𝐴 𝑚, 𝑛 𝐵[𝑛, 𝑘]

Suppose we have 𝐴 ∈ ℜ#×%×(, 𝐵 ∈ ℜ%×&
We can define the product of A and B to produce a tensor C as follows:

𝐶[𝑚, 𝑟, 𝑘] =3
'

𝐴 𝑚, 𝑛, 𝑟 𝐵[𝑛, 𝑘]

16

Sometimes this is called Tensor Mode-n Multiplication

Operations on tensors

Elementwise operations: Apply some function to each element of the
tensor

17

0 -3

1 2

-2 -1

0 3

1 2

2 1

0 9

1 4

4 1

Elementwise square

Elementwise absolute value

Operations on tensors

Reshape: Re-organize the numbers in the tensor to produce a tensor of a
different shape and/or dimensionality

18

4

3.5

1.2

-3

9

-1

4 -3

3.5 9

1.2 -1

A 6 dimensional tensor reshaped to a 3×2 matrix

There is a lot more about tensors that you can learn by
doing

19

What we will see

1. Tensors

2. What is the semantics of a computation graph?
– That is, what the nodes and edges mean

3. How to construct them

4. How do perform computations with them

20

Nodes represent values

21

Expression 𝐱

𝐱

Graph

The value is implicitly or explicitly typed.

It could represent a
• Scalar (i.e. a number)
• A vector
• A matrix
• Or more generally, a tensor

Edges represent function arguments

22

𝐱

| 𝐱 |
f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲
f 𝐮, 𝐯 = 𝐮!𝐯

𝐲

A node with an incoming edge is a function of the the parent node

Edges represent function arguments

23

𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲

A node with an incoming edge is a function of the the parent node

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮!𝐯

Edges represent function arguments

24

𝐱

| 𝐱 |

𝐱

𝐱!𝐲

𝐲

A node with an incoming edge is a function of the the parent node

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮!𝐯

Edges represent function arguments

25

𝐱

𝐱!𝐲

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples, the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯

𝐱

| 𝐱 |

Notation: We will write down what that function is next to the node.

When we write this, we will use formal arguments (here, the 𝐮 and 𝐯). Think
of these as similar to the argument names we use when we declare
functions while programming.

f 𝐮 = | 𝐮 | f 𝐮, 𝐯 = 𝐮!𝐯

Edges represent function arguments

26

𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮!𝐯

𝐲

Each node knows how to compute two things:

1. Its own value using its inputs
• In these examples, the nodes on top compute | 𝐱 |	and 𝐱!𝐲

2. The value of its partial derivative with respect to each input
• Left graph: the node on top knows to compute "#

"𝐮
• Right graph: the node on top knows to compute "#

"𝐮
 and "#

"𝐯

Graphs represent functions

27

𝐱

| 𝐱 |f 𝐮 = | 𝐮 |

𝐱

𝐱!𝐲f 𝐮, 𝐯 = 𝐮!𝐯

𝐲

The functions expressed could be
• Nullary, i.e. with no arguments: if a node has no incoming edges
• Unary: if a node has one incoming edge
• Binary: if a node has two incoming edges
• …
• n-ary: if a node has n incoming edges

Let’s see some functions as graphs

28

Expression 𝐱!𝐀

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

Let’s see some functions as graphs

29

Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

Let’s see some functions as graphs

30

Expression 𝐱!𝐀𝐱

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

We could have written the same
function with a different graph.

Computation graphs are not
necessarily unique for a function

Let’s see some functions as graphs

31

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

Let’s see some functions as graphs

32

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

𝜕𝑓
𝜕𝐮 = 𝐌! +𝐌 𝐮

Derivative with
respect to this
parent

Let’s see some functions as graphs

33

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

𝜕𝑓
𝜕𝐌 = 𝐮𝐮#

Derivative with
respect to this

parent

Let’s see some functions as graphs

34

Expression 𝐱!𝐀𝐱

Graph

𝐱 𝐀

f 𝐮,𝐌 = 𝐮𝐓𝐌𝐮

Remember: The nodes also know
how to compute derivatives with
respect to each parent

Together, we can compute
derivatives of any function with
respect to all its inputs, for any value
of the input

𝜕𝑓
𝜕𝐮 = 𝐌! +𝐌 𝐮

𝜕𝑓
𝜕𝐌 = 𝐮𝐮#

𝜕𝑓
𝜕𝐱 = 𝐀! + 𝐀 𝐱 𝜕𝑓

𝜕𝐀 = 𝐱𝐱#

Let’s see some functions as graphs

35

Expression 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

f 𝑥$, 𝑥%, 𝑥& =4
𝒊

𝑥(

Let’s see some functions as graphs

36

Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥%, 𝑥& =4
𝒊

𝑥(

Let’s see some functions as graphs

37

Expression 𝑦 = 𝐱!𝐀𝐱 + 𝐛!𝐱 + 𝐜

𝐱

Graph

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥%, 𝑥& =4
𝒊

𝑥(

We can name variables by labeling nodes

Why are computation graphs interesting?

1. For starters, we can write neural networks as computation graphs.

2. We can write loss functions as computation graphs.
Or loss functions within the innermost stochastic gradient descent.

3. They are plug-and-play: We can construct a graph and use it in a program
that someone else wrote

For eg: We can write down a neural network and plug it into a loss function and a
minimization function from a library

4. They allow efficient gradient computation.

38

Libraries like PyTorch and
TensorFlow help construct
computation graphs

An example two layer neural network

39

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

An example two layer neural network

40

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

An example two layer neural network

41

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

This is called nn.Linear
in PyTorch

An example two layer neural network

42

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝐲𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

Exercises

Write the following functions as computation graphs:

• 𝑓 𝑥 = 𝑥! − log(𝑥)

• 𝑓 𝑥 = "
"#$%&(())

• 𝑓 w, x, 𝑦 = max(0, 1 − 𝑦w+x)	

• min
,

"
-
w.w+ 𝐶 ∑/max(0, 1 − 𝑦/w+𝑥/)

43

