
Neural Networks 
and 

Computation Graphs

Based on slides and material from Geoffrey Hinton, Richard Socher, Yoav Goldberg, Chris Dyer, Graham Neubig and others.



This lecture

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass
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Where are we?

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass
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Three computational questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the graph
– Something to think about: Given a node, can we say which nodes are inputs? Which nodes are 

outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the function at that input
– Or equivalently: How does the output change if I make a small change to the input?

3. Constructing graphs
– Need an easy-to-use framework to construct graphs
– The size of the graph may be input dependent

• A templating language that creates graphs on the fly
– Tensorflow, PyTorch are the most popular frameworks today
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Forward propagation
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Forward pass: An example
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𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

Conventions:

1. Any expression next to a node is the function it computes
2. All the variables in the expression are inputs to the node from left to right.



Forward pass
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𝑦𝑥
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)
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𝑢"

What function does this compute?



Forward pass
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𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 
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Forward pass
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What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs



Forward pass
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𝑦𝑥
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What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
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𝑥 + 𝑦
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log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦!



Forward pass

17

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"
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What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦!

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦!

This gives us the function



A second example
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𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"



A second example
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To compute the 
function, we need 
the values of the 
leaves of this DAG
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𝐱'𝐀𝐱 + 𝐛(𝐱 + 𝐜



Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.
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