
Neural Networks 
and 

Computation Graphs

Based on slides and material from Geoffrey Hinton, Richard Socher, Yoav Goldberg, Chris Dyer, Graham Neubig and others.



This lecture

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass

1



Where are we?

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass

2



Three computational questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the graph
– Something to think about: Given a node, can we say which nodes are inputs? Which nodes are 

outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the function at that input
– Or equivalently: How does the output change if I make a small change to the input?

3. Constructing graphs
– Need an easy-to-use framework to construct graphs
– The size of the graph may be input dependent

• A templating language that creates graphs on the fly
– Tensorflow, PyTorch are the most popular frameworks today

3



Forward propagation

4



Three computational questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the graph
– Something to think about: Given a node, can we say which nodes are inputs? Which nodes are 

outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the function at that input
– Or equivalently: How does the output change if I make a small change to the input?

3. Constructing graphs
– Need an easy-to-use framework to construct graphs
– The size of the graph may be input dependent

• A templating language that creates graphs on the fly
– Tensorflow, PyTorch are the most popular frameworks today

5



Forward pass: An example

6

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

Conventions:

1. Any expression next to a node is the function it computes
2. All the variables in the expression are inputs to the node from left to right.



Forward pass

7

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?



Forward pass

8

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 



Forward pass

9

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥



Forward pass

10

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦



Forward pass

11

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs



Forward pass

12

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦



Forward pass

13

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦!



Forward pass

14

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦!

𝑥(𝑥 + 𝑦)



Forward pass

15

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦!

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)



Forward pass

16

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦!

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦!



Forward pass

17

𝑦𝑥

𝑢 + 𝑣 𝑢!

log 𝑢𝑢𝑣

)
"

𝑢"

What function does this compute?

Suppose we shade nodes whose values we know (i.e. we have computed). 

𝑥
𝑦

We can only compute the value of a node if we know the values of all its inputs

𝑥 + 𝑦

𝑦!

𝑥(𝑥 + 𝑦)

log(𝑥 + 𝑦)

x x + y + log 𝑥 + 𝑦 + 𝑦!

This gives us the function



A second example

18

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"



A second example

19

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

To compute the 
function, we need 
the values of the 
leaves of this DAG



A second example

20

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

To compute the 
function, we need 
the values of the 
leaves of this DAG



A second example

21

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

Let’s also highlight 
which nodes can 
be computed 
using what we 
know so far



A second example

22

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

𝐱'



A second example

23

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

𝐱'

𝐛'𝐱



A second example

24

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

𝐱'

𝐛'𝐱
𝐱'𝐀



A second example

25

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

𝐱'

𝐛'𝐱
𝐱'𝐀

𝐱'𝐀𝐱



A second example

26

𝐱

𝐀

f 𝐔, 𝐕 = 𝐔𝐕

f 𝐮 = 𝐮𝐓

f 𝐌, 𝐯 = 𝐌𝐯

𝐛

𝐜f 𝐮, 𝐯 = 𝐮𝐓𝐯

𝑦f 𝑥$, 𝑥!, 𝑥% =)
𝒊

𝑥"

𝐱'

𝐛'𝐱
𝐱'𝐀

𝐱'𝐀𝐱

𝐱'𝐀𝐱 + 𝐛(𝐱 + 𝐜



Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.
 

27



Forward propagation

Given a computation graph G and values of its input nodes:
For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are computed before parents.
 

28


