
Neural Networks 
and 

Computation Graphs

Based on slides and material from Geoffrey Hinton, Richard Socher, Yoav Goldberg, Chris Dyer, Graham Neubig and others.



Where are we?

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass
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Three computational questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the graph
– Something to think about: Given a node, can we say which nodes are inputs? Which nodes are 

outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the function at that input
– Or equivalently: How does the output change if I make a small change to the input?

3. Constructing graphs
– Need an easy-to-use framework to construct graphs
– The size of the graph may be input dependent

• A templating language that creates graphs on the fly
– Tensorflow, PyTorch are the most popular frameworks today
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Backpropagation with computation graphs
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Three computational questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the graph
– Something to think about: Given a node, can we say which nodes are inputs? Which nodes are 

outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the function at that input
– Or equivalently: How does the output change if I make a small change to the input?

3. Constructing graphs
– Need an easy-to-use framework to construct graphs
– The size of the graph may be input dependent

• A templating language that creates graphs on the fly
– Tensorflow, PyTorch are the most popular frameworks today
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Calculus refresher: The chain rule

Suppose we have two functions 𝑓and 𝑔

We wish to compute the gradient of y = 	𝑓 𝑔 𝑥 .

We know that !"
!#
= 𝑓$ 𝑔 𝑥 ⋅ 𝑔′(𝑥)

Or equivalently: if 𝑧 = 𝑔(𝑥) and 𝑦 = 𝑓(𝑧), then

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑧
𝑑𝑥
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Or equivalently: In terms of computation graphs
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦



Or equivalently: In terms of computation graphs
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to 
compute its value given inputs, but also how to 
compute gradients



Or equivalently: In terms of computation graphs
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to 
compute its value given inputs, but also how to 
compute gradients

Start from the root of the graph and work backwards.

𝑑𝑦
𝑑𝑧



Or equivalently: In terms of computation graphs
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𝑥

𝑧

𝑦f

g

The forward pass gives us 𝑧 and 𝑦

Remember that each node knows not only how to 
compute its value given inputs, but also how to 
compute gradients

Start from the root of the graph and work backwards.

𝑑𝑦
𝑑𝑧

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑧
𝑑𝑥

When traversing an edge backwards to a new node: 
the gradient of the root with respect to that node is 
the product of the gradient at the parent with the 
derivative along that edge



A concrete example 
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u!

𝑦 =
1
𝑥!



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u!

𝑑𝑓
𝑑𝑢 = −

1
𝑢!

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥!

Let’s also explicitly write down the derivatives.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u!

𝑑𝑓
𝑑𝑢 = −

1
𝑢!

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥!

𝑑𝑦
𝑑𝑦 = 1

Now, we can proceed backwards from the output

At each step, we compute the gradient of the 
function represented by the graph with respect 
to the node that we are at.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u!

𝑑𝑓
𝑑𝑢 = −

1
𝑢!

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥!

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 =

𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑢 "#$

= 1 ⋅ −
1
𝑧! = −

1
𝑧!

Product of the gradient so far and 
the derivative computed at this step



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u!

𝑑𝑓
𝑑𝑢 = −

1
𝑢!

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥!

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

1
𝑧!

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 "#%

= −
1
𝑧! ⋅ 2𝑥 = −

2x
z!



A concrete example

15

𝑥

𝑧

𝑦𝑓 𝑢 =
1
𝑢

g u = u!

𝑑𝑓
𝑑𝑢 = −

1
𝑢!

𝑑𝑔
𝑑𝑢 = 2𝑢

𝑦 =
1
𝑥!

𝑑𝑦
𝑑𝑦 = 1

We can simplify this to get − 2
3!

𝑑𝑦
𝑑𝑧 = −

1
𝑧!

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 "#%

= −
1
𝑧! ⋅ 2𝑥 = −

2x
z!



A concrete example

16

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑓
𝑑𝑣 =

1
𝑢

Let’s also explicitly write down the derivatives. Note that 𝑓 has two 
derivatives because it has two inputs.



A concrete example

18

𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

At this point, we can compute the gradient 
of y with respect to z by following the edge 
from y to z.

But we can not follow the edge from y to x 
because all of x’s descendants are not 
marked as done.



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧

=
̇𝑑𝑦

𝑑𝑦
⋅
𝑑𝑓
𝑑𝑢 "#$

= 1 ⋅ −
𝑥
𝑧!

= −
𝑥
𝑧!

𝑑𝑓
𝑑𝑣 =

1
𝑢

Product of the gradient so far and 
the derivative computed at this step



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧

=
̇𝑑𝑦

𝑑𝑦
⋅
𝑑𝑓
𝑑𝑢 "#$

= 1 ⋅ −
𝑥
𝑧!

= −
𝑥
𝑧!

𝑑𝑓
𝑑𝑣 =

1
𝑢

Now we can get to x

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧!

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 "#%

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 &#%

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧!

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 "#%

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 &#%

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧!

𝑑𝑓
𝑑𝑣 =

1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 "#%

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 &#%

	

There are multiple backward paths into x.
The general rule: Add the gradients along all the paths. 



A concrete example
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𝑥

𝑧

𝑦𝑓 𝑢, 𝑣 =
𝑣
𝑢

g u = u!

𝑦 =
1
𝑥

with multiple outgoing edges

𝑑𝑓
𝑑𝑢 = −

𝑣
𝑢!

𝑑𝑔
𝑑𝑢

= 2𝑢

𝑑𝑦
𝑑𝑦 = 1𝑑𝑓

𝑑𝑣 =
1
𝑢

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑧 ⋅

𝑑𝑔
𝑑𝑢 "#%

+
𝑑𝑦
𝑑𝑦 ⋅

𝑑𝑓
𝑑𝑣 &#%

	

𝑑𝑦
𝑑𝑥 = −

𝑥
𝑧! ⋅ 2𝑥 + 1 ⋅

1
𝑧 = −

2𝑥!

𝑧! +
1
𝑧 = −

1
𝑥!

𝑑𝑦
𝑑𝑧 = −

𝑥
𝑧!



A neural network example
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This is the same two-layer network we saw before. But this 
time we have added a new loss term at the end.

Suppose our goal is to compute the derivative of the loss 
with respect to 𝐖,𝐕, 𝐚, 𝐛

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐



A neural network
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𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝒂

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐



A neural network
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𝐖 𝐱

𝒛𝟏𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝒛𝟐𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕 𝐳𝟑

𝒛𝟒𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐

To simplify notation, let 
us name all the nodes



A neural network
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𝐖 𝐱

𝒛𝟏𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝒛𝟐𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕 𝐳𝟑

𝒛𝟒𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐

Let us highlight nodes that are done

𝑑𝐿
𝑑𝐿 = 1



A neural network
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𝐖 𝐱

𝒛𝟏𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝒛𝟐𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕 𝐳𝟑

𝒛𝟒𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐

Whenever we have the derivative 
of the loss with respect to a node, 
some new derivatives can be 
computed. Let us also mark them.

𝑑𝐿
𝑑𝐿 = 1



A neural network
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𝐖 𝐱

𝒛𝟏𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝒛𝟐𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕 𝐳𝟑

𝒛𝟒𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐

𝑑𝐿
𝑑𝐿 = 1

𝑑𝐿
𝑑𝐲 =

𝑑𝐿
𝑑𝐿 ⋅

𝑑𝐿
𝑑𝐲 = 1 ⋅ 𝐲	 − 𝐲∗



A neural network
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𝐖 𝐱

𝒛𝟏𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝒛𝟐𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕 𝐳𝟑

𝒛𝟒𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐

𝑑𝐿
𝑑𝐲 =

𝑑𝐿
𝑑𝐿 ⋅

𝑑𝐿
𝑑𝐲 = 𝐲	 − 𝐲∗

𝑑𝐿
𝑑𝐚 =

𝑑𝐿
𝑑𝐲 ⋅

𝑑𝐲
𝑑𝐚 = 𝐲	 − 𝐲∗ ⋅ 1



A neural network
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𝐖 𝐱

𝒛𝟏𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝒛𝟐𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡𝐟 𝐯 = tanh(𝐯)

𝐕 𝒛𝟑

𝒛𝟒𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝒚𝐟 𝐮, 𝐯 = 𝐮 + 𝐯𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝑳 =
1
2

𝒚	 − 𝒚∗
𝟐

𝑳

𝐲∗

𝒇(𝐮, 𝐯) =
1
2 𝐮	 − 𝐯

𝟐

𝑑𝐿
𝑑𝐲 =

𝑑𝐿
𝑑𝐿 ⋅

𝑑𝐿
𝑑𝐲 = 𝐲	 − 𝐲∗

𝑑𝐿
𝑑𝐳𝟒

=
𝑑𝐿
𝑑𝐲 ⋅

𝑑𝐲
𝑑𝒛𝟒

= 𝐲	 − 𝐲∗ ⋅ 1
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We can stop when we have all 
these derivatives because 𝐱 and 𝐲∗ 
are constants.



Backpropagation, in general

After we have done the forward propagation,

Loop over the nodes in reverse topological order starting with a final goal 
node
– Compute derivatives of final goal node value with respect to each edge’s tail node

• If there are multiple outgoing edges from a node, sum up all the derivatives for the edges
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