
Neural Networks 
and 

Computation Graphs

Based on slides and material from Geoffrey Hinton, Richard Socher, Yoav Goldberg, Chris Dyer, Graham Neubig and others.



This lecture

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass
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Where are we?

• What is a neural network?

• Computation Graphs

• Algorithms over computation graphs
– The forward pass
– The backward pass
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Three computational questions

1. Forward propagation
– Given inputs to the graph, compute the value of the function expressed by the graph
– Something to think about: Given a node, can we say which nodes are inputs? Which nodes are 

outputs?

2. Backpropagation
– After computing the function value for an input, compute the gradient of the function at that input
– Or equivalently: How does the output change if I make a small change to the input?

3. Constructing graphs
– Need an easy-to-use framework to construct graphs
– The size of the graph may be input dependent

• A templating language that creates graphs on the fly
– Tensorflow, PyTorch are the most popular frameworks today
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Constructing computation graphs
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Two methods for constructing graphs

We may require different sized computation graphs for different inputs
– Eg: different sentences have different lengths. We may have a neural network 

whose size depends on sentence length.
– How could we statically declare a computation graph of a fixed size?

• One option: Assume a size that is big enough and for smaller examples, 
pad it with dummy values

• Another option: Dynamically create a computation graph on the fly 
when we need to.
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Two methods for constructing graphs

• Static declaration
– Phase 1: Define an architecture 

• Maybe using standard control flow operations like loops, conditionals, etc to simplify repeated 
code

– Phase 2: Run a bunch of data through the graph to train and make predictions

• Dynamic declaration
– Graph is constructed implicitly (perhaps via operator overloading) at the same 

time as the forward propagation 
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Static declaration

• Pros
– Offline optimization/scheduling of graphs is powerful 
– Limits on operations mean better hardware support 

• Cons
– Structured data (even simple stuff like sequences), even variable-sized data, is ugly 
– You effectively learn a new programming language (“the Graph  Language”) and 

you write programs in that language to process data. 

• Examples: PyTorch, TensorFlow
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Dynamic declaration

• Pros
– The library is less invasive, no need to learn a new syntax
– Forward computation is written in your favorite programming  language with all its 

features, using your favorite algorithms 
– Interleave construction and evaluation of the graph 

• Cons
– We can’t do offline graph optimization because there is little time
– If the graph is static, the effort can be wasted 

• Examples: Chainer, most automatic differentiation libraries, DyNet
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Summary: Computation graphs

An abstraction that allows us to write any differentiable (or sub-differentiable) 
functions as a directed acyclic graph

– Building blocks for modern neural networks
– This will allow us to think about differentiable programs

Two algorithms:
– Forward propagation: process nodes in topological order to compute function value
– Backpropagation: process nodes in reverse topological order to compute derivative

Two methods for constructing graphs: Static vs dynamic
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Why computation graphs?
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Neural networks are differentiable functions

Neural networks can be written as computation graphs
– We have already seen an example of a two layer neural network

The abstraction allows us to work with named modules
– We saw nn.Linear
– Standard libraries define both the low level operators (addition, tanh, softmax, 

etc) and entire neural network architectures (e.g. Transformer) as computation 
graphs

– Allow for plug-and-play
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Loss functions are differentiable functions

The standard recipe:

1. Define a neural network architecture (e.g. a module in PyTorch)
2. Initialize the model randomly
3. Load a dataset and iterate over it in batches
4. For each batch, 

1. define the loss (internally a computation graph)
2. Use the standard algorithms for prediction (forward pass) and taking gradients of 

the loss (backward pass)
3. Use standard optimizers (e.g. Adam) to optimize the loss
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Loss functions are also computation graphs



Worked example: Multiclass logistic regression

General setting
– Inputs: 𝐱 (represented in some simple feature space as d-dimensional vectors)
– Output: y ∈ 1, 2,⋯ , 𝐾  

The model is defined by 
– a 𝐾×𝑑 matrix W (i.e. one as d-dimensional vector per label) 
– a 𝐾×1 vector b (one bias term per label)

Forward pass: W𝐱 + b
– This produces a 𝐾 dimensional vector of scores (one per label)
– Also called the logits

Prediction: Pick the label that has the highest score

14



The underlying probabilistic model

The conditional probability of the label is defined as the softmax of the 
scores:

𝑃 𝑦 𝐱 =
exp score 𝑦, 𝐱

∑,-./ exp(score 𝑖, 𝐱 )
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score 𝑦, 𝑥 = W𝐱 + 𝑏 !

The 𝑦!" element of the logits vector
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This expression uses the softmax function:

softmax 𝑧!, 𝑧", ⋯ =
exp 𝑧!
∑# exp 𝑧#
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score 𝑦, 𝑥 = W𝐱 + 𝑏 !

The 𝑦!" element of the logits vector

If the number of labels is two, this is identical to the probabilistic model for logistic regression.

Exercise: Prove it

Interpretation:  Score each 
label, and then convert to a well-
formed probability distribution 
by exponentiating + normalizing



Cross-entropy loss

Generalizes the logistic loss for binary classification

Given a labeled example 𝐱, 𝑦  and a model defined probabilistically via 
W, b the loss is defined as

𝐿12 𝐱, 𝑦,W, b = −log 𝑃(𝑦 ∣ 𝑥,W, b)

Both the model and the loss are computation graphs, so we can use 
standard machinery
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Often written differently in documentation. Exercise: Prove that they are the same

This is a standard building block when we design models. Any time you need your 
model to make choice between K items, think softmax and cross-entropy loss


