Decoding algorithms

THE
U UNIVERSITY
OF UTAH



Where we are

We have seen different models for predicting sequences of tokens

— The underlying model could be a RNN or a transformer decoder

These autoregressive models
— Produce one token at a time
— The most recently predicted token is the input for the next step

The process of producing an output sequence involves chaining togther
multiple decisions
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The setup: Any autoregressive model

P(wowywowzwy ) =
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The setup: Any autoregressive model

The token w1l is constructed
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The setup: Any autoregressive model

The token w2 is constructed
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The setup: Any autoregressive model

The token w3 is constructed

P(WoWiWoWsW, -+ ) = using this distribution
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The setup: Any autoregressive model

The token w4 is constructed

P(WoWwywoWsW, -+ ) = using this distribution
P(token | wy ) - P(token | wyw; ) - P(token | wow;w, ) - P(token | wowywows ) -+

_______
____________
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T Sl 79 w3 wl w2 w3
w0 w0

Recurrent neural network Transformer decoder

| Both are ways to define probabilities for the next word given the sequence so far l
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Decoding: The algorithmic question

Given some method to create a probability distribution P(token | wowyw, «++)
how should we predict the “best” sequence?
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The answer to this question
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Decoding: The algorithmic question

The answer to this question

Given some method to create a probability distribution P(token | wow;w, ---) | does not depend on what
kind of model we have

J o 7’ ?
how should we predict the “best” sequence: underneath the probabilities

What does best mean? ldeas?
Some notions of best when it comes to generating text
— Most probable
— Fast
— Does not repeat
— Diverse outputs
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A toy example

Suppose our language model can pick from one of the
following words at any step:
a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words
seen so far

Every token in the vocabulary is assigned a probability
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Suppose our language model can pick from one of the
A toy example

following words at any step:
a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words
seen so far

o Every token in the vocabulary is assigned a probability
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This produces a new distribution over the next token
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Suppose our language model can pick from one of the

A tOy exam p | e following words at any step:
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next token distribution would be different.



Suppose our language model can pick from one of the
following words at any step:
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following words at any step:
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A toy example
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A toy example
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A toy example
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The SearCh SpaCe for deCOdlng Each circle is a word that

gets picked at a certain step

Goal: To find the “best” path in this graph
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The SearCh SpaCe for deCOdlng Each circle is a word that

gets picked at a certain step

Goal: To find the “best” path in this graph
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Different decoding strategies exist

Search based decoding Sampling based decoding
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Deterministic approaches that involves

searching the space of sequences to select
one
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Different decoding strategies exist

Search based decoding

Deterministic approaches that involves

searching the space of sequences to select
one

Sampling based decoding

Randomized approaches that involve
sampling from the token conditional
probability distribution
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one probability distribution

e Greedy decoding  Random sampling

 Beam search * Top-Ksampling
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Greedy decoding

At each step, pick the token that has the highest probability

w, = argmax P(v|wowy - wp_1y)
{v € Vocabulary}
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Greedy decoding

At each step, pick the token that has the highest probability

w, = argmax P(v|wowy - wp_1y)
{v € Vocabulary}

Pros:
— Simple
— Fast

Cons:

— If there is a high probability word later in the sequence, but to get there the model should have
chosen a low probability word, this would get missed

— Also, in practice, the outputs can be repetitive
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Different decoding strategies exist

Search based decoding Sampling based decoding
Deterministic approaches that involves Randomized approaches that involve
searching the space of sequences to select  sampling from the token conditional
one probability distribution

* Greedy decoding  Random sampling

 Beam search * Top-Ksampling

* Nucleus sampling



Beam search

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

What we might really want to do is to explore the full search space.

We cannot. Beam search is a compromise
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Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

55



Beam search: A compromise

» Keep size-limited priority queue of states

— Called the beam, sorted by probability for the state

e At each step:

— Explore all transitions from the current state

— Add all to beam and trim the size

(-

)

Example: Suppose we have a beam of size k = 2

At the beginning, the beam has
only one element, the start state
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Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:

— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

7 (A=)

(-

)

Lot emoem=P T > (B) ) _)

e (Cr ) _)

Expand all the states in the beam
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Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

7 (A——) 059 Expand all the states in the beam

__________ > (B,—,—) 10 Score the newly created states

\\\A (C) ) _) -3
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Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

7 (A4,—,—-) 09 Expand all the states in the beam
(- — — --------- > (B,——) 10 Score the newly created states
(¢, —,-) -3 The top k new states form the

new beam (sorted)
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Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

(_l T (B’ ) _)
(A —,—) The top k new states form the
new beam (sorted)




Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

)

(== — (B,—, —) Score the newly created states

(A —,—) The top k new states form the
new beam (sorted)

Now we are ready for the next step



Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

(Br Ar _)

(B, B, _)

(_' T . (Br D _) ________ S (B, C, —)
(A, -, —) (A, A, _)
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(Ar Cr _)



Beam search: A compromise

» Keep size-limited priority queue of states

— Called the beam, sorted by probability for the state

e At each step:

— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

(-

)

(B; T

(A' ) _)

-------- >

(Br Ar _)
(B, B, _)
(B, C' _)
(A, A, _)
(Ar Br _)
(Ar Cr _)

0.1
-3
10
20
-1
4.1

Expand all the states in the beam

Score the newly created states
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Beam search: A compromise

» Keep size-limited priority queue of states

— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

(-

)

(Br ) _)

(A' ) _)

-------- >

(Br Ar _)
(B, B, _)
(B, C, _)
(A, A, _)
(Ar Br _)
(Ar Cr _)

0.1
-3
10
20
-1
4.1

Expand all the states in the beam
Score the newly created states

The top k new states form the
new beam (sorted)
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Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

(== — (B,—, —) (A A, —) Score the newly created states

(A —,—) (B,C,—) The top k new states form the
new beam (sorted)




Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

(_' T > (B' ) _) (A, A, _) (A' A' B)

(A —, ) (B,C,—) (B,C,0)




Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size
Example: Suppose we have a beam of size k = 2

(_' T > (B' T _) (A, A, _) (Ar Ar B)
(A —,—) (B,C,—) (B,C,C)

Final answer: Top of the beam at the end of search



Beam Search

Keep size-limited priority queue of states
— Called the beam, sorted by probability for the state

e At each step:

— Explore all transitions from the current state
— Add all to beam and trim the size

Pros

Explores more than greedy search. Greedy
search is beam search with beam size 1

In general, easy to implement, very popular
We get a set of sequences that we can then
re-order or use in other ways
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Beam Search

Keep size-limited priority queue of states

— Called the beam, sorted by probability for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size

Pros

Explores more than greedy search. Greedy
search is beam search with beam size 1

In general, easy to implement, very popular
We get a set of sequences that we can then
re-order or use in other ways

Cons

A good state might fall out of the beam
Can be still repetitive. Possible solution: add an n-gram
penalty to penalize n-grams that get repeated

Generated text may be boring for a reader
Do we always choose the most probable next words? What
makes a sequences of words interesting?
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Different decoding strategies exist

Search based decoding Sampling based decoding
Deterministic approaches that involves Randomized approaches that involve
searching the space of sequences to select  sampling from the token conditional
one probability distribution

e Greedy decoding  Random sampling

 Beam search * Top-Ksampling

* Nucleus sampling



Sampling based approaches

Rather than picking the most probable next token, randomly pick one using
the next token distribution

Wn~P( v | Wowy s Wep_q) )
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Random sampling in our toy setting

And so on...

[ s|dde
————1 9y
—————— Wy

I mes

I 3ys
I 3y
| m—

Il

0.3
0.2
0.1

9|dde
Jay
wiy

MeS [

ays

ayy

__oolla.l %'

=F @]
o o

0.8
0.6
0.4
0.2

»
>

INl....

—

0.3
0.2
0.1

0

72

9|dde
Yy
wiy
MES
ays
oy
ay3
e

@

(©F

o

©
9|dde C————— >5|dde
Jay 1 J9y
wiy I wiy
MES /1 mes
ays O sys
oy O sy
oyl I ay3
e | e

B 5§ § €
o O O O

other
choices

o|dde
Jay
wiy
MesS
3ys
9y
2yl

e



Random sampling in our toy setting
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And so on...
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

Wn~P( v | wowy - Win_q) )

Pros

— Produces more interesting text
— Diverse outputs

Cons
— Does not produce coherent outputs. Why?
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

Wn~P( v | wowy - Win_q) )

Pros

— Produces more interesting text
— Diverse outputs

cons

— Does not produce coherent outputs. Why?
A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

Wn~P( v | wowy - Win_q) )

Pros

— Produces more interesting text
— Diverse outputs

cons

— Does not produce coherent outputs. Why?
A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the
next token distribution

Wn~P( v | wowy - Win_q) )

e (1)
Pros P(token;|context) = 5
: : . exp | =
— Produces more interesting text 2. €Xp (T)
— Diverse outputs When T is lower than 1, probabilities get more sharp

and lower probabilities get diminished

cons When T =0, all the probability is placed on the token
with the highest s; — Greedy decoding

— Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Other variants of sampling

Top-K sampling
— Instead of sampling from all the words, pick the K most probable words, and
distribute the probability mass among them

— GPT2 used this

1.0-y-

ZwEVtop_K P(w|“The”) = (0.68 ZweVmp_K P(w[“The”, “C&I‘”) =0.99
A A
o N o B
QWUDDDDDDDDD HD _______
nice dog car woman guy man people big house «cat drives i not the small told

s turns stops down a
P(w|“The”) P(w|“The”, “car”)



Other variants of sampling

Top-K sampling
— Instead of sampling from all the words, pick the K most probable words, and
distribute the probability mass among them
— GPT2 used this

Nucleus sampling (sometimes called Top-p sampling)

— Instead of choosing a fixed K, choose as many words as necessary so that the total
probability allocated to them is at least p

Both methods seem to produce more fluent text than greedy and beam
search
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This lecture: Decoding algorithms

How to predict a sequence
 The setup: An abstract auto-regressive model

* Decoding algorithms
— Greedy decoding
— Beam search
— Random sampling
— Top-K sampling
— Nucleus sampling
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