Decoding algorithms

Where we are

We have seen different models for predicting sequences of tokens

– The underlying model could be a RNN or a transformer decoder

These autoregressive models

- Produce one token at a time
- The most recently predicted token is the input for the next step

The process of producing an output sequence involves chaining togther multiple decisions

This lecture: Decoding algorithms

How to predict a sequence

- The setup: An abstract auto-regressive model
- Decoding algorithms

This lecture: Decoding algorithms

How to predict a sequence

- The setup: An abstract auto-regressive model
- Decoding algorithms

w1 w0

Recurrent neural network Transformer decoder

 $P(w_0w_1w_2w_3w_4\cdots) =$ $P(\text{token} \mid w_0) \cdot P(\text{token} \mid w_0 w_1) \cdot P(\text{token} \mid w_0 w_1 w_2) \cdot P(\text{token} \mid w_0 w_1 w_2 w_3) \cdots$

Recurrent neural network Transformer decoder

Recurrent neural network Transformer decoder

Recurrent neural network Transformer decoder

This lecture: Decoding algorithms

How to predict a sequence

- The setup: An abstract auto-regressive model
- Decoding algorithms

Given some method to create a probability distribution P (token | $w_0w_1w_2\cdots$) how should we predict the "best" sequence?

Given some method to create a probability distribution P (token $| w_0 w_1 w_2 \cdots$) how should we predict the "best" sequence?

The answer to this question does not depend on what kind of model we have underneath the probabilities

Given some method to create a probability distribution P (token $| w_0 w_1 w_2 \cdots$) how should we predict the "best" sequence?

What does *best* mean? Ideas?

The answer to this question does not depend on what kind of model we have underneath the probabilities

Given some method to create a probability distribution P (token | $w_0w_1w_2\cdots$) how should we predict the "best" sequence?

The answer to this question does not depend on what kind of model we have underneath the probabilities

What does *best* mean? Ideas?

Some notions of best when it comes to generating text

- Most probable
- Fast
- Does not repeat
- Diverse outputs

– ….

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words seen so far

Every token in the vocabulary is assigned a probability

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words seen so far

Every token in the vocabulary is assigned a probability

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

Suppose our decoder decides to pick the word "she"

This produces a new distribution over the next token

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

If it picked a different token, say "a", then the next token distribution would be different.

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

Suppose our language model can pick from one of the following words at any step:

a, the, he, she, saw, him, her, apple

And so on…
The search space for decoding

Each circle is a word that gets picked at a certain step

Goal: To find the "best" path in this graph

The search space for decoding

Each circle is a word that gets picked at a certain step

Goal: To find the "best" path in this graph

The search space for decoding

Each circle is a word that gets picked at a certain step

Goal: To find the "best" path in this graph

Search based decoding

Sampling based decoding

Search based decoding

Sampling based decoding

Deterministic approaches that involves searching the space of sequences to select one

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

Sampling based decoding

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

- Greedy decoding
- Beam search

Sampling based decoding

- Random sampling
- Top-K sampling
- Nucleus sampling

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

- Greedy decoding
- Beam search

Sampling based decoding

- Random sampling
- Top-K sampling
- Nucleus sampling

Greedy decoding

At each step, pick the token that has the highest probability

$$
w_n = \operatorname*{argmax}_{\{v \in \text{Vocabulary}\}} P(v \mid w_0 w_1 \cdots w_{\{n-1\}})
$$

And so on…

51

Greedy decoding

At each step, pick the token that has the highest probability

$$
w_n = \operatorname*{argmax}_{\{v \in \text{Vocabulary}\}} P(v \mid w_0 w_1 \cdots w_{\{n-1\}})
$$

Pros:

– Simple

– Fast

Cons:

- If there is a high probability word later in the sequence, but to get there the model should have chosen a low probability word, this would get missed
- Also, in practice, the outputs can be repetitive

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

- Greedy decoding
- Beam search

Sampling based decoding

- Random sampling
- Top-K sampling
- Nucleus sampling

Beam search

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

What we might really want to do is to explore the full search space.

We cannot. Beam search is a compromise

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

At the beginning, the beam has only one element, the start state

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

 $(A, -, -)$ Expand all the states in the beam

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

Now we are ready for the next step

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Expand all the states in the beam

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

(−, −, −) (A, −, −) B, A, − (B, B, −) (B, C, −) (A, A, −) (A, B, −) (A, C, −) 0.1 -3 10 20 -1 4.1

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

$$
\begin{array}{|c|c|c|c|}\n\hline\n(0,0,-,-) & (B,A,-) & 0.1 & (B,A,-) & 0.1 & (B,B,-) & -3 & (B,C,-) & 10 & (B,A,-) & 20 & (A,B,-) & -1 & (A,C,-) & 4.1 & 0\n\end{array}
$$

Expand all the states in the beam

core the newly created states

he top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Example: Suppose we have a beam of size $k = 2$

Final answer: Top of the beam at the end of search

Beam Search

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Pros

- Explores more than greedy search. Greedy search is beam search with beam size 1
- In general, easy to implement, very popular
- We get a set of sequences that we can then re-order or use in other ways

Beam Search

- Keep size-limited priority queue of states
	- Called the beam, sorted by probability for the state
- At each step:
	- Explore all transitions from the current state
	- Add all to beam and trim the size

Pros

- Explores more than greedy search. Greedy search is beam search with beam size 1
- In general, easy to implement, very popular
- We get a set of sequences that we can then re-order or use in other ways

Cons

- A good state might fall out of the beam
- Can be still repetitive. Possible solution: add an n-gram penalty to penalize n-grams that get repeated
- Generated text may be *boring* for a reader *Do we always choose the most probable next words? What makes a sequences of words interesting?*

Search based decoding

Deterministic approaches that involves searching the space of sequences to select one

- Greedy decoding
- Beam search

Sampling based decoding

- Random sampling
- Top-K sampling
- Nucleus sampling

Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the next token distribution

 $w_n \sim P(v \mid w_0 w_1 \cdots w_{n-1})$

Random sampling in our toy setting

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$
w_n \sim P(v \mid w_0 w_1 \cdots w_{n-1})
$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

– Does not produce coherent outputs. Why?

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$
w_n \sim P(v \mid w_0 w_1 \cdots w_{n-1})
$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

– Does not produce coherent outputs. Why? A solution: Use a temperature term in the softmax to make the probabilities "peaky"

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$
w_n \sim P(v \mid w_0 w_1 \cdots w_{n-1})
$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

– Does not produce coherent outputs. Why? A solution: Use a temperature term in the softmax to make the probabilities "peaky"

Rather than picking the most probable next token, randomly pick one using the next token distribution

$$
w_n \sim P(v \mid w_0 w_1 \cdots w_{n-1})
$$

Pros

- Produces more interesting text
- Diverse outputs

Cons

– Does not produce coherent outputs. Why? A solution: Use a *temperature* term in the softmax to make the probabilities "peaky"

$$
P(token_i|context) = \frac{\exp\left(\frac{1}{2}\right)}{\sum_j \exp\left(\frac{1}{2}\right)}
$$

 $\overline{s_i}$ \overline{T}

 $\frac{1}{S_j}$

 \overline{T}

When T is lower than 1, probabilities get more sharp and lower probabilities get diminished

When $T = 0$, all the probability is placed on the token with the highest $s_i \rightarrow G$ reedy decoding

Other variants of sampling

Top-K sampling

- Instead of sampling from all the words, pick the K most probable words, and distribute the probability mass among them
- GPT2 used this

Other variants of sampling

Top-K sampling

- Instead of sampling from all the words, pick the K most probable words, and distribute the probability mass among them
- GPT2 used this

Nucleus sampling (sometimes called Top-p sampling)

– Instead of choosing a fixed K, choose as many words as necessary so that the total probability allocated to them is at least p

Both methods seem to produce more fluent text than greedy and beam search

This lecture: Decoding algorithms

How to predict a sequence

- The setup: An abstract auto-regressive model
- Decoding algorithms
	- Greedy decoding
	- Beam search
	- Random sampling
	- Top-K sampling
	- Nucleus sampling