
Decoding algorithms
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Where we are

We have seen different models for predicting sequences of tokens
– The underlying model could be a RNN or a transformer decoder

These autoregressive models
– Produce one token at a time
– The most recently predicted token is the input for the next step

The process of producing an output sequence involves chaining togther
multiple decisions
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How to predict a sequence

• The setup: An abstract auto-regressive model

• Decoding algorithms
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Decoding: The algorithmic question

Given some method to create a probability distribution 𝑃(token ∣ 𝑤!𝑤"𝑤#⋯)
how should we predict the “best” sequence?

What does best mean? Ideas?
Some notions of best when it comes to generating text

– Most probable
– Fast
– Does not repeat
– Diverse outputs
– ….
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Suppose our language model can pick from one of the 
following words at any step: 

a, the, he, she, saw, him, her, apple

Some model predicts a conditional distribution given the words 
seen so far

Every token in the vocabulary is assigned a probability
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Goal: To find the “best” path in this graph

How large is this graph? 

How many nodes? 
How many paths?

Each circle is a word that 
gets picked at a certain step



Different decoding strategies exist

Search based decoding

Deterministic approaches that involves 
searching the space of sequences to select 
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve 
sampling from the token conditional 
probability distribution 

• Random sampling
• Top-K sampling
• Nucleus sampling
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Greedy decoding

At each step, pick the token that has the highest probability

𝑤, = argmax
- ∈ /012345267

𝑃 𝑣 𝑤8𝑤9⋯𝑤 ,:9

Pros:
– Simple
– Fast

Cons:
– If there is a high probability word later in the sequence, but to get there the model should have 

chosen a low probability word, this would get missed
– Also, in practice, the outputs can be repetitive
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Different decoding strategies exist

Search based decoding

Deterministic approaches that involves 
searching the space of sequences to select 
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve 
sampling from the token conditional 
probability distribution 

• Random sampling
• Top-K sampling
• Nucleus sampling
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Beam search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

54

What we might really want to do is to explore the full search space.

We cannot. Beam search is a compromise



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)
At the beginning, the beam has 
only one element, the start state



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam(A, −, −)

(B, −, −)

(C, −, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(𝐴, −, −)

(𝐵, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

60

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

Now we are ready for the next step



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

0.1
-3
10
20
-1
4.1



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

64

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

0.1
-3
10
20
-1
4.1

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(A, A, B)
(B, C, C)



Beam search: A compromise

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(𝐴, 𝐴, 𝐵)
(B, C, C)

Final answer: Top of the beam at the end of search



Beam Search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

68

Pros
• Explores more than greedy search. Greedy 

search is beam search with beam size 1
• In general, easy to implement, very popular
• We get a set of sequences that we can then 

re-order or use in other ways



Beam Search

• Keep size-limited priority queue of states
– Called the beam, sorted by probability for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

69

Pros
• Explores more than greedy search. Greedy 

search is beam search with beam size 1
• In general, easy to implement, very popular
• We get a set of sequences that we can then 

re-order or use in other ways

Cons
• A good state might fall out of the beam
• Can be still repetitive. Possible solution: add an n-gram 

penalty to penalize n-grams that get repeated
• Generated text may be boring for a reader

Do we always choose the most probable next words? What 
makes a sequences of words interesting?



Different decoding strategies exist

Search based decoding

Deterministic approaches that involves 
searching the space of sequences to select 
one

• Greedy decoding
• Beam search

Sampling based decoding

Randomized approaches that involve 
sampling from the token conditional 
probability distribution 

• Random sampling
• Top-K sampling
• Nucleus sampling

70



Sampling based approaches

Rather than picking the most probable next token, randomly pick one using 
the next token distribution

𝑤,~𝑃 𝑣 𝑤-𝑤.⋯𝑤 ,/.

71



Random sampling in our toy setting
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Random sampling in our toy setting
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Random sampling in our toy setting
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Random sampling in our toy setting
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Random sampling in our toy setting
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”

77



Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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Sampling based approaches

Rather than picking the most probable next token, randomly pick one using the 
next token distribution

𝑤!~𝑃 𝑣 𝑤"𝑤#⋯𝑤 !$#

Pros
– Produces more interesting text
– Diverse outputs

Cons
– Does not produce coherent outputs. Why?

A solution: Use a temperature term in the softmax to make the probabilities “peaky”
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𝑃 𝑡𝑜𝑘𝑒𝑛& 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) =
exp 𝑠&

𝑇
∑' exp

𝑠'
𝑇

When T is lower than 1, probabilities get more sharp 
and lower probabilities get diminished

When T = 0, all the probability is placed on the token 
with the highest 𝑠𝑖 → Greedy decoding



Other variants of sampling

Top-K sampling
– Instead of sampling from all the words, pick the K most probable words, and 

distribute the probability mass among them
– GPT2 used this
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Other variants of sampling

Top-K sampling
– Instead of sampling from all the words, pick the K most probable words, and 

distribute the probability mass among them
– GPT2 used this

Nucleus sampling (sometimes called Top-p sampling)
– Instead of choosing a fixed K, choose as many words as necessary so that the total 

probability allocated to them is at least p

Both methods seem to produce more fluent text than greedy and beam 
search
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This lecture: Decoding algorithms

How to predict a sequence

• The setup: An abstract auto-regressive model

• Decoding algorithms
– Greedy decoding
– Beam search
– Random sampling
– Top-K sampling
– Nucleus sampling
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