Dependency Parsing

THE
U UNIVERSITY
OF UTAH

Outline

Two formalisms for syntactic structure: Phrase structure and dependencies

Two algorithms for dependency parsing
— Transition based dependency parsing
— Graph based dependency parsing

Evaluating dependencies

Dependency parsing

* |nput: Sentence, tokenized + a dummy ROOT word

* Qutput: A dependency tree
— Each word in the sentence is a node
— Every word (except ROOT) should have an incoming edge indicating its head word
— Only one word should be a dependent of ROOT
— There are no cycles

Dependency parsing

* |nput: Sentence, tokenized + a dummy ROOT word

* Qutput: A dependency tree
— Each word in the sentence is a node
— Every word (except ROOT) should have an incoming edge indicating its head word

— Only one word should be a dependent of ROOT

— There are no cycles

Dependency theory also allows arrows to cross

Trees no arrows cross are called projective
Otherwise, they are called non-projective

Projective parse tree: No crossing
dependency arcs when the words
are laid out in their linear order,
with all arcs above the word

Two families of parsing algorithms

Transition-based parsing

Graph based parsing

Two families of parsing algorithms

Transition-based parsing
— A generalization of the idea of shift-reduce parsing
— Greedily build attachments, using classifiers to decide which attachments to perform next
— Before neural networks: MaltParser (Nivre et al 2008)
— After neural networks: Chen and Manning (2014), Kipperwaser and Goldberg (2017)

Graph based parsing

Two families of parsing algorithms

Transition-based parsing
— A generalization of the idea of shift-reduce parsing

— Greedily build attachments, using classifiers to decide which attachments to perform next
— Before neural networks: MaltParser (Nivre et al 2008)

— After neural networks: Chen and Manning (2014), Kipperwaser and Goldberg (2017)
Graph based parsing

— Score all possible pairs of dependencies using a classifier

— Use a minimum spanning tree algorithm to find the best labeled tree

— Before neural networks: MSTParser (McDonald et al, 2005)
— With neural networks: Dozat and Manning (2017)

Two families of parsing algorithms

Transition-based parsing
— A generalization of the idea of shift-reduce parsing

— Greedily build attachments, using classifiers to decide which attachments to perform next
— Before neural networks: MaltParser (Nivre et al 2008)

— After neural networks: Chen and Manning (2014), Kipperwaser and Goldberg (2017)
Graph based parsing
— Score all possible pairs of dependencies using a classifier

— Use a minimum spanning tree algorithm to find the best labeled tree

— Before neural networks: MSTParser (McDonald et al, 2005) Sl e otet e welll B

— With neural networks: Dozat and Manning (2017) Eisner’s algorithm is a dynamic
programming approach

Outline

Two formalisms for syntactic structure: Phrase structure and dependencies

Two algorithms for dependency parsing
— Transition based dependency parsing
— Graph based dependency parsing

Evaluating dependencies

Transition based parsing

 Whatis transition based parsing?
 The arc-standard transition system
* An example

e Greedy parsing algorithm

* Model building

 Practical concerns

Transition based parsing

 What is transition based parsing?
 The arc-standard transition system
* An example

e Greedy parsing algorithm

* Model building

 Practical concerns

10

Transition based parsing

Simple greedy discriminative parser that executes a sequence of actions
that update the parse state

11

Transition based parsing

Simple greedy discriminative parser that executes a sequence of actions
that update the parse state

Parse state

1. A buffer that consists of the input words

2. A stack whose top elements represent
the next words that will be connected
with a dependency edge

3. Aset of all dependency edges that have
been created so far

Transition based parsing

Simple greedy discriminative parser that executes a sequence of actions
that update the parse state

Parse state Actions
1. A buffer that consists of the input words Operate on a parse state to produce the next state
2. A stack whose top elements represent Behave like shift and reduce in a shift-reduce parser
the next words that will be connected
with a dependency edge Shift moves a word from the buffer to the stack
3. Aset of all dependency edges that have Different kinds of reduce actions that produce
been created so far dependency edges

13

Transition based parsing

Simple greedy discriminative parser that executes a sequence of actions
that update the parse state

Parse state Actions
1. A buffer that consists of the input words Operate on a parse state to produce the next state
There are different kinds of transition systems whose
2. A stack whos o _ _ reduce parser
the next wore P€havior is defined by the set of actions.
with a depenl the stack
We will look at the Arc-Standard transition system which
3. Asetofalld€ has three actions: shift, left-arc and right-arc produce

been created su-ran ‘ ‘ UTPCTITUTITICY TURTS

14

Transition based parsing

 Whatis transition based parsing?
 The arc-standard transition system
* An example

e Greedy parsing algorithm

* Model building

 Practical concerns

15

1. Shift

Top of the stack

Stack o

o,w; | [,A

First element of the buffer

|

Buffer w; |

of the buffer

The set of dependency
relations accumulated so far

16

1. Shift

Stack o |w;

Add the first element
of the buffer to the
top of the stack

O-)Wl |ﬁ;A — 0 | Wl;ﬁ)A

Buffer 8

Remove the first
element of the buffer

The set of dependency
relations accumulated so far

Keep the dependency
relations unchanged

17

2. Left—arc,

olw; lw,p,A

< Wi

Stack o | w; | w;

Wj

Buffer 8

The set of dependency
relations accumulated so far

18

2. Left—arc,

o lwi lw,B,A—alwy,B,AU {r(w,w)}

o B A {r(w;,)

Stack o | w; Buffer 8

The set of dependency
relations accumulated so far

Remove the top two elements of

1. Add an edge from w; to w; with label r
the stack

2. Push W; back on the stack

Keep the buffer unchanged

19

3. Right—arc,

olw;lw;,pB,A

< Wi Wj

Stack o | w; | w;

Buffer 8

The set of dependency
relations accumulated so far

20

3. Right—arc,

olwilw,p,A->0lw,[,AU {r(Wi'WJ')}

o B AU fr(wy w,))

Stack o | w; Buffer 8

The set of dependency
relations accumulated so far

Remove the top two elements of

1. Addan edge from w; to w; with label r
the stack

2. Push w; back on the stack

Keep the buffer unchanged

21

Transition based parsing

 Whatis transition based parsing?
 The arc-standard transition system
* An example

e Greedy parsing algorithm

* Model building

 Practical concerns

22

Step
0

An example

Stack

root

Buffer

The

tabby | cat | scratched | the

couch

To start things off:

place all the words in the buffer.

The stack contains only root.

The set of dependencies is empty

Dependencies

empty

23

Step
0

An example

Stack

root

Buffer

The

tabby

cat

scratched

the

couch

Dependencies

empty

Next action

24

Step
0

An example

Stack

root

Buffer

The

tabby

cat

scratched

the

couch

root

The

The first element of the buffer moves to the stack

tabby

cat

scratched

the

couch

Dependencies

empty

empty

Next action

25

Step
0

An example

Stack

root

Buffer

The

tabby

cat

scratched

the

couch

root

The

tabby

cat

scratched

the

couch

Dependencies

empty

empty

Next action

shift

26

Step
0

An example

Stack

root

root

The

Buffer

The

tabby

cat

scratched

the

couch

root

The

tabby

The first element of the buffer moves to the stack

tabby

cat

scratched

the

couch

cat

scratched

the

couch

Dependencies

empty

empty

empty

Next action

shift

27

Step
0

An example

Stack

root

root

The

Buffer

The

tabby

cat

scratched

the

couch

root

The

tabby

tabby

cat

scratched

the

couch

cat

scratched

the

couch

Dependencies

empty

empty

empty

Next action

shift

shift

shift

28

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch

Dependencies

empty

empty

empty

empty

Next action

shift

shift

shift

29

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch

Dependencies

empty

empty

empty

empty

Next action

shift

shift

shift

Left—-arc amod

30

An example

Step Stack Buffer Dependencies Next action
0 root The | tabby | cat | scratched | the | couch empty
1 root | The tabby | cat | scratched | the | couch empty
2 root | The | tabby cat | scratched | the | couch empty
3 root | The | tabby | cat scratched | the | couch empty
4 root | The scratched | the | couch empty
Take the top two elements tabby cat

of the stack

31

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The scratched | the | couch

amod
Add an edge to that goes to the tabby '« cat

left with the appropriate label

Dependencies

empty

empty

empty

empty

empty

Next action

shift

shift

shift

Left—-arc amod

32

An example

Step Stack Buffer Dependencies Next action
0 root The | tabby | cat | scratched | the | couch empty
1 root | The tabby | cat | scratched | the | couch empty
2 root | The | tabby cat | scratched | the | couch empty
3 root | The | tabby | cat scratched | the | couch empty
4 root | The scratched | the | couch amod(cat, tabby)
Record that edge in the set of tabby iamod cat

dependencies so far

33

An example

Step Stack Buffer Dependencies Next action
0 root The | tabby | cat | scratched | the | couch empty

1 root | The tabby | cat | scratched | the | couch empty

2 root | The | tabby cat | scratched | the | couch empty

3 root | The | tabby | cat scratched | the | couch empty Left-arc amod
4 root | The | cat scratched | the | couch amod(cat, tabby) Left-arc det

Place the top element of the
stack from before back on the
stack

34

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The | cat scratched | the | couch
root scratched | the | couch

The cat

Dependencies

empty

empty

empty

empty

amod(cat, tabby)

amod(cat, tabby)

Next action

Left—-arc det

35

Step
0

An example

Stack Buffer
root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The | cat scratched | the | couch
root scratched | the | couch
det
The cat

Dependencies

empty

empty

empty

empty

amod(cat, tabby)

amod(cat, tabby)

Next action

Left—-arc det

36

Step
0

An example

Stack Buffer
root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The | cat scratched | the | couch
root scratched | the | couch
det
The cat

Dependencies

empty

empty

empty

empty

amod(cat, tabby)

amod(cat, tabby)
det(cat, the)

Next action

Left—-arc det

37

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The | cat scratched | the | couch
root | cat scratched | the | couch

Dependencies

empty

empty

empty

empty

amod(cat, tabby)

amod(cat, tabby)
det(cat, the)

Next action

Left—-arc det

38

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The | cat scratched | the | couch
root | cat scratched | the | couch

Dependencies

empty

empty

empty

empty

amod(cat, tabby)

amod(cat, tabby)
det(cat, the)

Next action

shift

shift

shift

Left—-arc amod

Left—-arc det

shift

39

Step
0

An example

Stack Buffer

root The | tabby | cat | scratched | the | couch
root | The tabby | cat | scratched | the | couch
root | The | tabby cat | scratched | the | couch
root | The | tabby | cat scratched | the | couch
root | The | cat scratched | the | couch
root | cat scratched | the | couch
root | cat | scratched the | couch

Dependencies

empty

empty

empty

empty

amod(cat, tabby)

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)

Next action

shift

shift

shift

Left—-arc amod

Left—-arc det

shift

40

Step

6

An example

Stack

root

cat

scratched

Buffer

the

couch

Dependencies

amod(cat, tabby)
det(cat, the)

Next action

Left-arc subj

41

Step

6

An example

Stack

root

cat

scratched

root

cat

Buffer

the

couch

the

couch

scratched

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)

Next action

Left-arc subj

42

Step

6

An example

Stack
root | cat | scratched
root

subj

Buffer

the

couch

the

couch

cat

scratched

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)

Next action

Left-arc subj

43

Step

6

An example

Stack
root | cat | scratched
root

subj

Buffer

the

couch

the

couch

cat

scratched

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

Next action

Left-arc subj

44

Step

6

An example

Stack

root

cat

scratched

Buffer

root

scratched

the

couch

the

couch

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

Next action

Left-arc subj

45

Step

6

An example

Stack

root

cat

scratched

Buffer

root

scratched

the

couch

the

couch

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

Next action

Left-arc subj

46

Step

6

An example

Stack

Buffer

root

cat | scratched

the

couch

root

scratched

the

couch

root

scratched

the

couch

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

Next action

Left-arc subj

47

Step

6

An example

Stack

Buffer

root

cat | scratched

the

couch

root

scratched

the

couch

root

scratched

the

couch

Dependencies

amod(cat, tabby)
det(cat, the)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)

Next action

Left-arc subj

shift

48

An example

Step Stack Buffer Dependencies Next action

6 root | cat | scratched the | couch ZmOd(CE‘t'tabe) Left-arc subj
et(cat, the)

7 root | scratched the | couch amod(cat, tabby) shift
det(cat, the)
subj(scratched, cat)

8 root | scratched | the couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

9 root | scratched | the | couch empty amod(cat, tabby)
det(cat, the)

subj(scratched, cat)

49

An example

Step Stack Buffer Dependencies Next action

6 root | cat | scratched the | couch Zmod(cat,tabbv) Left-arc subj
et(cat, the)
7 root | scratched the | couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

8 root | scratched | the couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

9 root | scratched | the | couch empty amod(cat, tabby) Left-arc det
det(cat, the)

subj(scratched, cat)

50

An example

Step Stack Buffer Dependencies Next action

6 root | cat | scratched the | couch Zmod(cat,tabbv) Left-arc subj
et(cat, the)
7 root | scratched the | couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

8 root | scratched | the couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

9 root | scratched | the | couch empty amod(cat, tabby) Left-arc det
det(cat, the)

subj(scratched, cat)

10 root | scratched empty amod|(cat, tabby)
det(cat, the)

subj(scratched, cat)

the couch

51

An example

Step Stack Buffer Dependencies Next action

6 root | cat | scratched the | couch Zmod(cat,tabbv) Left-arc subj
et(cat, the)
7 root | scratched the | couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

8 root | scratched | the couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

9 root | scratched | the | couch empty amod(cat, tabby) Left-arc det
det(cat, the)

subj(scratched, cat)

10 root | scratched empty e ———
det(cat, the)
det subj(scratched, cat)
the |« couch

52

An example

Step Stack Buffer Dependencies Next action

6 root | cat | scratched the | couch Zmod(cat,tabbv) Left-arc subj
et(cat, the)
7 root | scratched the | couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

8 root | scratched | the couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

9 root | scratched | the | couch empty amod(cat, tabby) Left-arc det
det(cat, the)

subj(scratched, cat)

10 root | scratched empty amod|(cat, tabby)
det(cat, the)
det subj(scratched, cat)
the '« couch det(couch, the)

53

An example

Step Stack Buffer Dependencies Next action

6 root | cat | scratched the | couch Zmod(cat,tabbv) Left-arc subj
et(cat, the)
7 root | scratched the | couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

8 root | scratched | the couch amod(cat, tabby)

det(cat, the)
subj(scratched, cat)

9 root | scratched | the | couch empty amod(cat, tabby) Left-arc det
det(cat, the)

subj(scratched, cat)

10 root | scratched | couch empty amod(cat, tabby)
det(cat, the)

subj(scratched, cat)
det(couch, the)

54

Step

10

An example

Stack

root

scratched

couch

Buffer

empty

Dependencies

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)
det(couch, the)

Next action

55

Step

10

An example

Stack

root

scratched

couch

Buffer

empty

Dependencies

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)
det(couch, the)

Next action

Right-arc obj

56

An example

Step Stack Buffer Dependencies Next action
10 root | scratched | couch empty amod(cat, tabby) Right-arc obj
det(cat, the)

subj(scratched, cat)
det(couch, the)

11 root empty amod(cat, tabby)
det(cat, the)

subj(scratched, cat)
det(couch, the)

scratched couch

Take the top two elements of
the stack

57

An example

Step Stack Buffer
10 root | scratched | couch empty
11 root empty

obj
scratched » couch

Add an edge going to the right
with the appropriate label

Dependencies Next action
amod(cat, tabby) Right-arc obj
det(cat, the)

subj(scratched, cat)
det(couch, the)

amod(cat, tabby)
det(cat, the)
subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

58

An example

Step Stack Buffer Dependencies Next action
10 root | scratched | couch empty amod(cat, tabby) Right-arc obj
det(cat, the)

subj(scratched, cat)
det(couch, the)

11 root | scratched empty amod|cat, tabby)
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

Record the new edge in the set
of dependencies and place the
second element back on the

stack
59

An example

Step Stack Buffer Dependencies Next action
10 root | scratched | couch empty amod(cat, tabby) Right-arc obj
det(cat, the)

subj(scratched, cat)
det(couch, the)

11 root | scratched empty amod(cat, tabby) Right-arc root
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

60

An example

Step Stack Buffer Dependencies Next action

10 root | scratched | couch empty amod(cat, tabby) Right-arc obj

det(cat, the)
subj(scratched, cat)
det(couch, the)

11 root | scratched empty amod(cat, tabby) Right-arc root
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

11 empty amod(cat, tabby)
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

root scratched

61

An example

Step Stack Buffer Dependencies Next action

10 root | scratched | couch empty amod(cat, tabby) Right-arc obj

det(cat, the)
subj(scratched, cat)
det(couch, the)

11 root | scratched empty amod(cat, tabby) Right-arc root
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

11 empty empty amod(cat, tabby)
det(cat, the)
subj(scratched, cat)
det(couch, the)

root obj(scratched, couch)

root | ——— scratched root(root, scratched)

62

An example

Step Stack Buffer Dependencies Next action

10 root | scratched | couch empty amod(cat, tabby) Right-arc obj

det(cat, the)
subj(scratched, cat)
det(couch, the)

11 root | scratched empty amod(cat, tabby) Right-arc root
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

11 root empty amod(cat, tabby)
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)
root(root, scratched)

63

An example

Step Stack Buffer Dependencies Next action
10 root | scratched | couch empty amod(cat, tabby) Right-arc obj
det(cat, the)

subj(scratched, cat)
det(couch, the)

11 root | scratched empty amod(cat, tabby) Right-arc root
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

11 root empty amod(cat, tabby)
det(cat, the)

subj(scratched, cat)
det(couch, the)
obj(scratched, couch)

Stop when the stack contains only root(root, scratched)
root and the buffer is empty

64

Transition based parsing

 Whatis transition based parsing?
 The arc-standard transition system
* An example

* Greedy parsing algorithm

* Model building

 Practical concerns

65

The parsing algorithm

Input: A tokenized sentence
1. Set state « {|root], |[words], []}

2. While state is not the final state:

3. Return state

66

The parsing algorithm

Input: A tokenized sentence
Stack

1. Set state « {[T0¢0t], [words], [}

2. While state is not the final state:

3. Return state

67

The parsing algorithm

Input: A tokenized sentence
Stack Buffer

1. Set state « {[T0¢0t], [WO;”dS]: [1}

2. While state is not the final state:

3. Return state

68

The parsing algorithm

Input: A tokenized sentence

Stack

Buffer

Dependencies

1. Set state « {[TOVOt], [WO;”dS], [j}

2. While state is not the final state:

3. Return state

69

The parsing algorithm

Input: A tokenized sentence

Stack Buffer Dependencies

1. Set state « {[TOVOt], [WO;”dS], [j

2. While state is not the final state:

3. Return state

-
-
-
-

The stack has only root,
and the buffer is empty

70

The parsing algorithm

Input: A tokenized sentence
1. Set state « {|root], |[words], []}

2. While state is not the final state:
1. Choose action <« NextAction(state)
2. Setstate < Apply(state, action)

3. Return state

71

The parsing algorithm

Input: A tokenized sentence

1. Setstate < {|root], [words],[]} .

2. While state is/n,otf'th’é/final state:
1. Choose action < NextAction(state)
2. Setstate < Apply(state, action)

3. Return state

Action can be one of shift, labeled left-arc

or labeled right-arc.

then this action will be one of 1 + 2L
possible options

" If the dependency formalism has L labels,

72

The parsing algorithm
Input: A tokenized sentence

1. Setstate < {|root], [words],[]} .

2. While state is not-the final state:
1. Choose action < NextAction(state) <
2. Setstate < Apply(state, action)

3. Return state

Action can be one of shift, labeled left-arc
or labeled right-arc.

" If the dependency formalism has L labels,

then this action will be one of 1 + 2L
possible options

Typically, a classifier over the action set

73

The parsing algorithm

Input: A tokenized sentence

Action can be one of shift, labeled left-arc
or labeled right-arc.

1. Set state « {[T‘o()t], [WO‘I‘dS], []} If the dependency formalism has L labels,

then this action will be one of 1 + 2L
possible options

2. While state is not-the final state:
2
1. Choose action < NextAction(state) < Typically, a classifier over the action set
2. Setstate < Apply(state, action)

This is a greedy algorithm. Once it takes
an action, it does not back track.

3. Return state

74

Transition based parsing

 Whatis transition based parsing?
 The arc-standard transition system
* An example

e Greedy parsing algorithm

 Model building

 Practical concerns

75

The parsing algorithm
Input: A tokenized sentence

1. Set state < {|root], |words], []}

2. While state is not the final state:
1. Choose action « NextAction(state)
2. Setstate < Apply(state, action)

3. Return state

The parser behavior is defined by
its how it chooses the action to
take at each state.

This can be framed as a multi-class
classification problem

76

Choosing the next action

Given a parse state, what action should be taken next?
Input: The entire parse state, i.e., the stack, buffer and dependencies so far
Output: Shift, Left-arc, or Right-arc, for different dependency labels r

How would you approach this modeling problem?

77

The action classifier

A multiclass classifier, whose inputs is features from the state, and the label
space is the set of all possible actions.

Key design choices:

e \What features?
e \What classifier?

78

Featurizing the stack, the buffer and dependencies

Stack Buffer Dependencies
root | cat | scratched the | couch amod(cat, tabby)
det(cat, the)

What information can we get from such a configuration?

Words in the stack and the buffer: Here, cat, scratched from the stack and
the, couch from the buffer

* Any properties of these words such as parts of speech (assuming that this is
available)

* The positions of words on the stack and the buffer. E.g. cat is at position 2 on
the stack

* Previously generated children of the words on the stack. Here, we know from the
existing dependencies that cat has two children—tabby and the—with labels
amod and det respectively

All this information
could contribute to
features for this
configuration

79

Indicator features versus embedding features

The typical featurizing strategy: Take the top 1-3 words from the stack and the
buffer and extract features from them.

Pre-neural era: Indicator features. E.g. a one-hot vector representing the fact that
“second element of the stack = cat, POS of second element on stack = Noun, first element on stack = scratched”

— Sparse, very high dimensional features
— Feature computation can be slow

Neural era:

— All the words are represented by word embeddings

— POS tags and other information like dependency labels (if they are used) can also be
represented as embeddings that will get trained along the way

— All these vectors can be combined by concatenating them

80

The action classifier

A multiclass classifier, whose inputs is features from the state, and the label
space is the set of all possible actions.

Key design choices:

e \What features? For neural models: embeddings of words, POS tags, dependency labels
 What classifier?

81

What classifier?

The model can be any neural network architecture provided the final layer

IS assigns a probability or score to actions. For example, a two-layer neural
network

82

What classifier?

The model can be any neural network architecture provided the final layer

IS assigns a probability or score to actions. For example, a two-layer neural
network

The input layer x consisting of

concatenated embeddings from the -

stack, buffer, dependencies, etc

83

What classifier?

The model can be any neural network architecture provided the final layer

iS assigns a probability or score to actions. For example, a two-layer neural
network

A hidden layer, e.g. h = ReLU(Wix + bq) _

The input layer x consisting of .

stack, buffer, dependencies, etc

84

What classifier?

The model can be any neural network architecture provided the final layer

iS assigns a probability or score to actions. For example, a two-layer neural
network

The output layer, e.g. softmax(W,h + b,),
that produces probabilities over actions

1}

A hidden layer, e.g. h = ReLU(Wix + bq) _

The input layer x consisting of .

stack, buffer, dependencies, etc

85

What classifier?

The model can be any neural network architecture provided the final layer

IS assigns a probability or score to actions. For example, a two-layer neural
network

Training such a neural network will

involve minimizing cross-entropy loss
The output layer, e.g. softmax(W>h + b,), over a training set

that produces probabilities over actions

t Standard training considerations apply:
_ optimizers, learning rates, batch sizes,
Ahidden layer, e.g. h = ReLU(Wx + by) _ hyper-parameter selection, etc.

The input layer x consisting of !

concatenated embeddings from the -

stack, buffer, dependencies, etc

86

Training the model with a treebank

Treebanks contain (sentence, tree) pairs

But to train a model that maps parse states to actions, we need training
data with (configuration, action) pairs

Before any training is done, we need to convert the trees in the treebank to

the form our model knows about
— This requires us to first use a training oracle that looks at parse configuration and a
reference tree and decides what action to take next

— See Jurafsky and Martin’s book chapter for details

87

Transition based parsing

 Whatis transition based parsing?
 The arc-standard transition system
* An example

e Greedy parsing algorithm

* Model building

 Practical concerns

88

Odds and ends

 We saw the Arc-Standard transition system (defined by the three kinds of
actions). There are other transition systems

* Arc-standard transition parsing produces projective trees. How to
address this?
— Do nothing, lose accuracy points on any non-projective trees in the data
— Change the dependency formalism to one that is only projective
— Use some sort of post-processing to fix edges that ought to be non-projective

— Change the transition system to include additional actions to handle non-
projectivity
— Use a graph-based parser where this does not matter

89

Transition-based dependency parsing: Summary

* Transition based parsing: The parse tree is constructed by applying actions to configurations
— We saw the arc-standard transition system, but there are others

 The modeling question: What action to pick for the current configuration?
— Previously: Linear models

— More recently: Neural models. Can use any embedding—word2vec, Glove type static embeddings, or

also more modern embeddings generated by models like BERT

e Greedy parsing algorithm:

The model produces scores/probabilities over the next action. The algorithm we saw greedily selects
the action predicted by the model at each step. Could lead to error propagation

Beam search is an alternative approach: Instead of greedily picking the next transition, keep a beam of
size k. The beam represents the k best sequences of actions so far

We will see beam search in a later lecture

90

