
Dependency Parsing



Outline

Two formalisms for syntactic structure: Phrase structure and dependencies

Two algorithms for dependency parsing
– Transition based dependency parsing
– Graph based dependency parsing

Evaluating dependencies
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Dependency parsing

• Input: Sentence, tokenized + a dummy ROOT word

• Output: A dependency tree
– Each word in the sentence is a node
– Every word (except ROOT) should have an incoming edge indicating its head word
– Only one word should be a dependent of ROOT
– There are no cycles

• Dependency theory also allows arrows to cross
–  Trees no arrows cross are called projective
– Otherwise, they are called non-projective
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Projective parse tree: No crossing 
dependency arcs when the words 
are laid out in their linear order, 
with all arcs above the word



Two families of parsing algorithms

Transition-based parsing
– A generalization of the idea of shift-reduce parsing
– Greedily build attachments, using classifiers to decide which attachments to perform next
– Before neural networks: MaltParser (Nivre et al 2008)
– After neural networks: Chen and Manning (2014), Kipperwaser and Goldberg (2017)

Graph based parsing
– Score all possible pairs of dependencies using a classifier
– Use a minimum spanning tree algorithm to find the best labeled tree 
– Before neural networks: MSTParser (McDonald et al, 2005)
– With neural networks: Dozat and Manning (2017)
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Other algorithms exist as well. E.g. 
Eisner’s algorithm is a dynamic 
programming approach
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Dependency parses = spanning trees

A dependency tree is a tree whose words are nodes. Every word in a sentence has to be 
reachable from the root of the tree

– This means that the dependency tree is a spanning tree over the words

Key idea of graph-based parsing: Given an input sentence S, the goal is to find the “best” tree
– Define “best” using a scoring function called score

The goal of parsing: 

𝑇∗ = arg max
"∈$(&)

score(𝑡, 𝑆)

The best tree is the one that maximizes the score of the tree among all spanning trees for that sentence
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Scoring trees: The edge factored model

Trees can be arbitrarily large because sentences can be arbitrarily large

We need a scoring scheme that can account for this

The edge factored model: The score for a tree is the sum of scores of all its 
edges

𝑠𝑐𝑜𝑟𝑒 𝑡, 𝑆 =*
!∈#

𝑒𝑑𝑔𝑒-𝑠𝑐𝑜𝑟𝑒(𝑒)
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The modeling problem: Scoring edges

Any edge in the dependency tree is the tripe (head, dependent, label)

The scoring function can be any neural network.

Dozat and Manning (2017) trained two neural networks:
1. One computes the probability that there is an edge from word 𝑖 to word 

𝑗	i.e., 𝑃 𝑖 → 𝑗
2. Another assigns a label to an edge, i.e., 𝑃(𝑙𝑎𝑏𝑒𝑙 ∣ 𝑖 → 𝑗)
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The inference problem

Given some edge scoring function, we need to search over all trees to find 
the highest scoring one

This is the well studied problem of finding a maximum spanning tree 
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The standard solution: The 
Chu-Liu Edmonds algorithm



Comparing transition- and graph-based parsing

• Computational Complexity
– Graph based parsing is quadratic in the input length
– Transition based parsing is linear in sentence length

• Projectivity
– Graph based parsing can produce non-projective parse trees
– Transition based parsing can only produce projective trees without additional cleanup
– Tends to be a smaller issue English than for many languages

• Accuracy
– Graph based parsers can be better on dependency arcs where the head is far from the 

dependent
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