
Machine Learning

Learning with missing labels
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So far in the class

We have focused supervised learning

Every example in the training set is labeled by an oracle, 
perhaps a noisy one

Training data: S = {(xi, yi)}

We have seen various learning algorithms

And different ways to analyze learning
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What if: The labels are missing

Training data: S = {(xi, yi)}

Or alternatively:
We have a very small number of labeled examples.

And a large number of unlabeled examples

Semi-supervised learning: Few labeled  examples, many unlabeled examples

Unsupervised learning: No labeled examples at all
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{xi}



This lecture

• Semi-supervised/Unsupervised learning

• Expectation-Maximization

• Variants of EM
– K-Means
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Labeled data is a scarce resource

Expensive and time consuming to obtain
– Sometimes requires specialized expertise

Some examples:
– Biology: If you want labeled genome data, you might not be able to get 

it without expensive lab work
– Language: Annotating semantics requires many linguists many 

days/years
– Computer vision: Annotating videos/images is time-consuming and 

expensive

Some of you are already facing this in your projects!
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Unlabeled data is everywhere (almost)



Unsupervised learning

Can we learn without any labeled data?
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Unsupervised learning

Can we learn without any labeled data?
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How would you label these points?



Unsupervised learning

Can we learn without any labeled data?
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Perhaps this is a good labeling



Unsupervised learning

Can we learn without any labeled data?
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Perhaps this is a good labeling

Or maybe this one



Unsupervised learning

Can we learn without any labeled data?
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Perhaps this is a good labeling

Or maybe this one

Without any labeled 
data, we might get 
parameters only up to 
symmetry



Unsupervised learning

Can we learn without any labeled data?
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Perhaps this is a good labeling

Why not this one?



Unsupervised learning

Can we learn without any labeled data?
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Perhaps this is a good labeling

Why not this one?

Without any labeled 
data, we might have to 
make assumptions 
about regularities in 
the instance space



Semi-Supervised learning

Having a few labeled examples can help break 
symmetries
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Example: Naïve Bayes

Suppose we are using a naïve Bayes classifier
• Features: x1, x2, x3, x4

• Label: y

If we had training data, we know how to estimate parameters of 
the model

With the parameters, we can predict y for new examples
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Learning the naïve Bayes Classifier

If we had data, maximum likelihood estimation is easy
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P(y = 1) = p

P(xj = 1 | y = 1) = aj

P(xj = 1 | y = 0) = bj



Using unlabeled examples
Say we use ten labeled examples to get the following probabilities
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j aj = P(xj = 1 | yj= 1) bj = P(xj = 1 | yj = 0)

1 3/4 1/4

2 1/2 1/4

3 1/2 3/4

4 1/2 1/2

p      = P(y = 1) = 1/2
1- p = P(y = 0) = 1/2

Now, for a new example (1,0,0,0): 
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Using unlabeled examples
Say we use ten labeled examples to get the following probabilities
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j aj = P(xj = 1 | yj= 1) bj = P(xj = 1 | yj = 0)

1 3/4 1/4

2 1/2 1/4

3 1/2 3/4

4 1/2 1/2

p      = P(y = 1) = 1/2
1- p = P(y = 0) = 1/2

Now, for a new example (1,0,0,0): 

What could we do with this information to improve our probability estimates?



Using unlabeled examples

For an unlabeled data point (1, 0, 0, 0), our model estimates that

Some options:
1. The model predicts a label. Use it as a labeled example

– In this case y = 1
– Or perhaps, we could only do this when our classifier is confident enough

2. The model does not predict a label. It predicts a fractional label!
– Recall: learning only needed counts. Counts do not need to be integers
– This example is a 12/15 positive example and a 3/15 negative example
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Broad strategies for using unlabeled data

1. Use a confidence threshold: When the label for an example 
is predicted with high enough confidence by the current 
model, 

1. Treat it as a labeled example [1 or 0]
2. Retrain the model

2. Use fractional examples:
1. Label examples as [P(y=1 |x) of 1 and P(y=0 | x) of 0]
2. Retrain the model
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Both approaches can be used iteratively



Unsupervised learning

Previous discussion: What if we had ten labeled examples and 
many unlabeled examples

What if: We have zero labeled examples and many unlabeled 
examples

We could still do the same
– Start with a guess for the probabilities
– Continue as above
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This is a version of Expectation Maximization



This lecture

• Semi-supervised/Unsupervised learning

• Expectation-Maximization

• Variants of EM
– K-Means
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Expectation Maximization

• A meta-algorithm to estimate a probability distribution in 
when attributes are missing

• Needs assumptions about the underlying probability 
distribution
– Suited to generative models
– Performance sensitive to the validity of the assumption (and 

also the initial guess of the parameters)

• Converges to a local maximum of the likelihood function
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The three coin example

25

We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q



The three coin example

Scenario 1: Someone picks either coin 1 or coin 2 and tosses it
Observation: H H T H
Which coin is more likely to have been tossed?
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Scenario 1: Someone picks either coin 1 or coin 2 and tosses it
Observation: H H T H
Which coin is more likely to have been tossed?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

P(Coin 1 | H H T H) ∝ P(H H T H | Coin 1) = p3(1-p)

P(Coin 2 | H H T H) ∝ P(H H T H | Coin 2) = q3(1-q)

If we know p and q, we could compute these 
values and decide which is higher



The three coin example

Scenario 1: Someone picks either coin 1 or coin 2 and tosses it
Observation: H H T H
Which coin is more likely to have been tossed?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

If we know p and q, we could compute these 
values and decide which is higher

If we know what the 
probabilities are, we can 
compute the probability 
that an observation came 
from a particular coin

P(Coin 1 | H H T H) ∝ P(H H T H | Coin 1) = p3(1-p)

P(Coin 2 | H H T H) ∝ P(H H T H | Coin 2) = q3(1-q)



The three coin example

Scenario 2: Toss coin 0 first. If heads, then toss coin 1 four times. 
If tails, then toss coin 2 four times
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We have three coins
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The three coin example

Scenario 2: Toss coin 0 first. If heads, then toss coin 1 four times. 
If tails, then toss coin 2 four times
Observations: H HHHT, T HTHT, H HHHT, H HTTH
From these observations, estimate the values of p, q and 𝛼?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

Coin 
0

1st

toss
2nd

toss
3rd

toss
4th

toss

P(Heads) = 𝛼



The three coin example

Scenario 2: Toss coin 0 first. If heads, then toss coin 1 four times. 
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From these observations, estimate the values of p, q and 𝛼?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

𝛼 = 3/4



The three coin example

Scenario 2: Toss coin 0 first. If heads, then toss coin 1 four times. 
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

𝛼 = 3/4 p = 8/12 = 3/4
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

𝛼 = 3/4 p = 8/12 = 3/4 q = 2/4= 1/2



The three coin example

Scenario 2: Toss coin 0 first. If heads, then toss coin 1 four times. 
If tails, then toss coin 2 four times
Observations: H HHHT, T HTHT, H HHHT, H HTTH
From these observations, estimate the values of p, q and 𝛼?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

𝛼 = 3/4 p = 8/12 = 3/4 q = 2/4= 1/2

If we knew which of the data points came from 
Coin1 and which from Coin2, there is no problem



The three coin example

Scenario 3: Toss coin 0 first. If heads, then toss coin 1 four times. 
If tails, then toss coin 2 four times
But we observe only the tosses produced by coins 1 and 2
Observations: HHHT, HTHT, HHHT, HTTH
From these observations, estimate the values of p, q and 𝛼?
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We have three coins
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Coin 1: P(Heads) = p
Coin 2: P(Heads) = q
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Scenario 3: Toss coin 0 first. If heads, then toss coin 1 four times. 
If tails, then toss coin 2 four times
But we observe only the tosses produced by coins 1 and 2
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From these observations, estimate the values of p, q and 𝛼?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

There is no known analytical solution to this problem (in the general setting).

That is, it is not known how to compute the values of the parameters so as to 
maximize the likelihood of the data



What we know

1. Scenario 1: If we know what the coin biases are, we 
can compute the probability that an observation 
came from a particular coin 

P(missing variable | observation, coin biases)

2. Scenario 2: If we knew which of the data points 
came from Coin1 and which from Coin2, we can 
compute the P(heads) for all the coins
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One approach

1. Guess the probability that an observation (e.g: HHHT) comes from 
coin 1 or coin 2
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One approach

1. Guess the probability that an observation (e.g: HHHT) comes from 
coin 1 or coin 2

2. Loop:
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One approach

1. Guess the probability that an observation (e.g: HHHT) comes from 
coin 1 or coin 2

2. Loop:
1. Use this probability to get label (Coin 0’s value for each 

observation), possibly fractional
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One approach

1. Guess the probability that an observation (e.g: HHHT) comes from 
coin 1 or coin 2

2. Loop:
1. Use this probability to get label (Coin 0’s value for each 

observation), possibly fractional
2. Now we have fully labeled data, estimate the maximum 

likelihood estimates of the coin biases
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One approach

1. Guess the probability that an observation (e.g: HHHT) comes from 
coin 1 or coin 2

2. Loop:
1. Use this probability to get label (Coin 0’s value for each 

observation), possibly fractional
2. Now we have fully labeled data, estimate the maximum 

likelihood estimates of the coin biases
3. Now we know the coin biases, re-estimate the probability that 

an observation comes from coin 1 or 2
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One approach

1. Guess the probability that an observation (e.g: HHHT) comes from 
coin 1 or coin 2

2. Loop:
1. Use this probability to get label (Coin 0’s value for each 

observation), possibly fractional
2. Now we have fully labeled data, estimate the maximum 

likelihood estimates of the coin biases
3. Now we know the coin biases, re-estimate the probability that 

an observation comes from coin 1 or 2

This will converge to a local maximum of the overall likelihood function
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Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data
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Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data

In scenario 3: 
• Parameters are 𝛼, p, q 
• Each example xi is ith sequence of coin tosses of coin 1 or 2 at that round
• Let us refer to the value of coin 0 for each xi as yi
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Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data

In scenario 3: 
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Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data

In scenario 3: 
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The full example is xi and yi. And a part of it is hidden. 

So how do we get P(examplei | parameters)?



Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data

In scenario 3: 
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The full example is xi and yi. And a part of it is hidden. 

So how do we get P(examplei | parameters)?
Answer: Marginalize out the hidden variables



Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data

In scenario 3: 
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Maximum likelihood estimation

MLE: Find parameters that maximize the likelihood (or 
equivalently log-likelihood) of the data

In scenario 3: 
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This is the log likelihood we would like to maximize for MLE

This maximization is not easy. Sum inside log



Expectation Maximization

What we want (but can’t have)
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The strategy: Think of log probabilities as random variables

Learn by repeatedly maximizing a lower bound of LL

Log-likelihood of the observations



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

Why do we want to maximize this? Because this 
gives us the maximum likelihood estimate



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

This is true for any probability distribution Qi(y)

The summation over y is the definition of 
expectation with respect to Qi(y)



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃



Jensen’s inequality

If f is a convex function and X is a random variable, then

Or: 
If f is a concave function and X is a random variable, then
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Jensen’s inequality

If f is a concave function and X is a random variable, then

Let us apply this to the following function:

log is a concave function and the function inside the expectation 
is a random variable
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Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

By Jensen’s inequality



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

By Jensen’s inequality



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

Rewrite log



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

Greater 
than



Let us build an approximation
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What we want: Maximize LL(data|p, q, 𝛼). Denote (p, q, 𝛼) = 𝜃

Greater 
thanThe strategy: Let us maximize this lower 

bound on the likelihood instead



Expectation Maximization

What we want (but can’t have)
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Log-likelihood of the observations



Expectation Maximization

What we want (but can’t have)
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The strategy: Think of log probabilities as random variables

Learn by repeatedly maximizing a lower bound of LL

Log-likelihood of the observations



Expectation Maximization

Learning by maximizing expected log likelihood of the data
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Expectation Maximization

Learning by maximizing expected log likelihood of the data

68

Still need to decide what is a good Qi

What we would like is the one that makes this lower bound tight 

(Jensen’s inequality)



Expectation Maximization

Learning by maximizing expected log likelihood of the data
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Still need to decide what is a good Qi

What we would like is the one that makes this lower bound tight 

(Jensen’s inequality)

We can show that if we had an estimate of the 𝜃, say 𝜃!, then a tight lower 
bound is given by setting



Expectation Maximization

• Initialize the parameters 𝜃"

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example 𝐱$, estimate for every y

– M-Step: Find 𝜃%&' by maximizing with respect to 𝜃

• Return final 𝜃
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– M-Step: Find 𝜃%&' by maximizing with respect to 𝜃

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃"

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example 𝐱$, estimate for every y

– M-Step: Find 𝜃%&' by maximizing with respect to 𝜃

• Return final 𝜃
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Independent of 𝜃



Expectation Maximization

• Initialize the parameters 𝜃"

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example 𝐱$, estimate for every y

– M-Step: Find 𝜃%&' by maximizing with respect to 𝜃

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃"

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example 𝐱$, estimate for every y

– M-Step: Find 𝜃%&' by maximizing with respect to 𝜃

• Return final 𝜃

74

Intuitively: What is distribution 
over the hidden variables for 
this set of parameters



Expectation Maximization

• Initialize the parameters 𝜃"

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example 𝐱$, estimate for every y

– M-Step: Find 𝜃%&' by maximizing with respect to 𝜃

• Return final 𝜃
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Intuitively: What is distribution 
over the hidden variables for 
this set of parameters

Intuitively: Using the current 
estimate for the hidden 
variables, what is the best set of 
parameters for the entire data



Expectation Maximization

• Initialize the parameters 𝜃0

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

– M-Step: Find 𝜃t+1 by maximizing with respect to 𝜃

• Return final 𝜃
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Expectation Maximization

• Initialize the parameters 𝜃0

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

– M-Step: Find 𝜃t+1 by maximizing with respect to 𝜃

• Return final 𝜃
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Given the parameters, we 
can compute this function. 
Why?



Expectation Maximization

• Initialize the parameters 𝜃0

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

– M-Step: Find 𝜃t+1 by maximizing with respect to 𝜃

• Return final 𝜃
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Given the parameters, we 
can compute this function. 
Why?

This step needs can be 
solved either analytically 
or algorithmically.



Intuition
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We want to maximize this function



Intuition
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𝜃0

Start with a guess



Intuition
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𝜃0

Construct the expected log-likelihood function using the current 
guess and maximize it instead



Intuition
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𝜃0 𝜃1

New set of 
parameters



Intuition
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𝜃0 𝜃1

Construct the expected log-likelihood function using the current 
parameters and maximize it instead



Intuition
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𝜃0 𝜃1 𝜃2

New set of 
parameters



Intuition
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𝜃0 𝜃1 𝜃2 𝜃3

Construct the expected log-likelihood function using the current 
parameters and maximize it instead to get new set of parameters



Intuition
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𝜃0 𝜃1 𝜃2

1. Our initial guess matters, we could have landed on another local maximum as 
well. But we will always end up at one of the local maxima

2. We are replacing our “difficult” optimization problems with a sequence of 
“easy” ones.

𝜃3



Comments about EM

• Will converge to a local maximum of the log-likelihood
– Different initializations can give us different final estimates of 

probabilities

• How many iterations
– Till convergence. Keep track of expected log likelihood across 

iterations and if the change is smaller than some ² then stop

• What we need to specify the learning algorithm
– A task-specific definition of the probabilities
– A way to solve the maximization (the M-step)
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Checkpoint: Where are we

88

Learning with missing labels

Three coins example

Scenario 2: If we had complete data, we could 
estimate all probabilities

Scenario 1: If we knew the (p, q, 𝛼) and coin 
0’s toss was hidden, we can estimate what it 
was from the rest of the observations

Scenario 3: Can we estimate probabilities if 
coin 0 tosses were hidden?

EM algorithm: The 
general form

Let us instantiate 
EM for scenario 3



The three coin example

Scenario 3: Toss coin 0 first. If heads, then toss coin 1 four times. 
If tails, then toss coin 2 four times
But we observe only the tosses produced by coins 1 and 2
Observations: HHHT, HTHT, HHHT, HTTH
From these observations, estimate the values of p, q and 𝛼?
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We have three coins
Coin 0: P(Heads) = 𝛼
Coin 1: P(Heads) = p
Coin 2: P(Heads) = q

xi = one of these examples
yi = the corresponding value of the coin 0’s toss

The model



Expectation Maximization

• Initialize the parameters 𝜃0

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

– M-Step: Find 𝜃t+1 by maximizing with respect to 𝜃

• Return final 𝜃
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E step

The ith observation xi consists of 4 coin tosses, of which ki are heads
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Suppose we know the following estimates
Coin 0: P(Heads) = 
Coin 1: P(Heads) = 
Coin 2: P(Heads) = 

For an observation xi we want to compute P(yi | xi, current parameters)

Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss

Define
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The ith observation xi consists of 4 coin tosses, of which ki are heads
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Data =  {HHHT, HTHT, HHHT, HTTH}
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E step

The ith observation xi consists of 4 coin tosses, of which ki are heads
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Suppose we know the following estimates
Coin 0: P(Heads) = 
Coin 1: P(Heads) = 
Coin 2: P(Heads) = 

For an observation xi we want to compute P(yi | xi, current parameters)
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yi = the corresponding value of the coin 0’s toss
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Expectation Maximization

• Initialize the parameters 𝜃0

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

– M-Step: Find 𝜃t+1 by maximizing with respect to 𝜃

• Return final 𝜃
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These are the c’s



M step

What we want
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss



M step

What we want

Let us first write the log likelihood in terms of the 
parameters
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss



M step

What we want

Expand the expectation 

Substitute in the Qi’s
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss



M step

What we want

Expand the expectation 

Substitute in the Qi’s
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss

We have all the pieces
1. The ci’s are constants with respect to 𝜃
2. We just wrote the log P’s in terms of 𝜃



M step

What we want
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss

We can now take derivatives with respect to p, q 
and 𝛼 and set them to zero

Exercise: Do it



M step

What we want
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss

The solution



M step

What we want
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss

This has an intuitive interpretation
If ci

H is an indicator for whether the ith toss of coin zero is a head, then

The solution



M step

What we want
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Data =  {HHHT, HTHT, HHHT, HTTH}
xi = one of these examples
yi = the corresponding value of the coin 0’s toss

This has an intuitive interpretation
If ci

H is an indicator for whether the ith toss of coin zero is a head, then

The solution

Instead, the probabilities end up being treated like soft counts



Expectation Maximization

• Initialize the parameters 𝜃0

• Repeat until convergence (t = 1, 2, …)
– E-Step: For every example xi, estimate for every y

– M-Step: Find 𝜃t+1 by maximizing with respect to 𝜃

• Return final 𝜃
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These are the c’s

Analytically estimate 
the value of the next 𝜃



EM for Naïve Bayes

The setting
– Input: features x ∈ {0,1}d

– Output: y ∈{0, 1}
– Dataset: {x1, x2, x3, !, xm}, m unlabeled examples

The model

105



EM for Naïve Bayes

The setting
– Input: features x ∈ {0,1}d

– Output: y ∈ {0, 1}
– Dataset: {x1, x2, x3, !, xm}, m unlabeled examples

The model
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• Prior: P(y = 1) = p and P (y = 0) = 1 – p

• Likelihood for each feature given a label
• P(xj = 1 | y = 1) = aj and P(xj = 0 | y = 1) = 1 – aj
• P(xj = 1 | y = 0) = bj and P(xj = 0 | y = 0) = 1 - bj



EM for Naïve Bayes

The setting
– Input: features x ∈ {0,1}d

– Output: y ∈ {0, 1}
– Dataset: {x1, x2, x3, !, xm}, m unlabeled examples

The model

107



The E-step

Goal: Suppose we have a current estimate of 𝜃, 
compute Qi(y) = P(y | xi, 𝜃) for each example
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The E-step

Goal: Suppose we have a current estimate of 𝜃, 
compute Qi(y) = P(y | xi, 𝜃) for each example
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And we know how to compute these using our model



The M-Step

Goal
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Step 1: Expand log P(xi, y | 𝜃) in terms of p, a’s and b’s

Step 2: Substitute in Qi to write down the full expectation

Step 3: Take derivative with respect to each p, aj and bj

Step 4: Set derivatives to zero to get a new estimate for p, aj and bj

Exercise: Work out these steps on paper



The M-Step

Goal
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Taking derivatives and setting to zero gives

P(y = 1) = p P(xj = 1 | y = 1) = aj P(xj = 1 | y = 0) = bj



The M-Step

Goal
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Taking derivatives and setting to zero gives

P(y = 1) = p P(xj = 1 | y = 1) = aj P(xj = 1 | y = 0) = bj

And so on…



The M-Step: Intuition

113

If we had fully labeled data, we 
could learn the Naïve Bayes 
classifier using counts.



The M-Step: Intuition
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If we had fully labeled data, we 
could learn the Naïve Bayes 
classifier using counts.

Since we can not count, we keep 
the uncertainty by allowing 
fractional counts

P(y=1|xi, 𝜃t) behaves like the 
indicator function [y=1], except it 
allows fractional values



EM Summary

• A general procedure for learning with unobserved variables
– An iterative algorithm that converges to a local maximum of the 

likelihood function

• A family of algorithms
– Specific instantiation depends on what probabilistic model you are 

using
• You have to derive update rules for your own model

– Instantiated the algorithm for a mixture of Bernoulli distributions

• Very useful in practice. But can be sensitive to
– Choice of the probabilistic model
– Initialization
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This lecture

• Semi-supervised/Unsupervised learning

• Expectation-Maximization

• Variants of EM
– K-Means
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Hard EM

E-step in EM estimates the probability of the hidden 
variable using the current parameters
– Qi(y) = P(y | x, 𝜃t)

Hard EM: Instead of estimating the probability, we find 
the most probable assignment and use that instead in 
the M step
– Equivalently:

• Find the most probable value of y 
• Create a distribution Qi(y) that this value probability 1 and 

everything else zero
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Many variants of EM exist: MCMC EM, 
Variational EM, Generalized EM,…
These tweak on the same general idea.



Mixture of Gaussians

Setting
– Examples x 2 <d

– K possible labels y 2 {l1, l2, !, lK}

Generative model
– First draw a label from a multinomial distribution

P(y = li) = 𝛼i

– Then, the example x is drawn from a d-dimensional 
Normal distribution with mean ¹i and variance §i
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Or: Gaussian Mixture Model

¹i is a d dimensional vector and §i is a d£ d matrix



Example: 1 dimensional case
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(Three Gaussians)

Y = l1 Y = l2 Y = l3 Generating an example:

1. First sample a Y. Roll a 
three sided die where 
probability of l1, l2 and l3
are 𝛼1, 𝛼2 and 𝛼3 resp.

Say the die picks Y = l3

2. Draw a point x from the 
the Normal distribution 
corresponding to Y = l3

Say this point



Example: 2 dimensional case
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Likelihood of a point

Suppose we have a point x whose label is li

Likelihood of this point is 
P(li ) P(x | y = li ) = 𝛼i N(x; 𝜇#, 𝜎#)
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Probability density for a d 
dimensional Normal distribution 
with mean 𝜇$ and standard 
deviation 𝜎$



Unsupervised learning

Suppose we only have a collection of points and we want to 
assign labels to them one of K possible labels {l1, l2, !, lK}

Input: {x1, x2, !, xm}, each xi a real valued, d dimensional vector
Goal: Label each input point

Assumption: Suppose the points were generated according to 
the Gaussian mixture model

P(li ) P(x | y = li ) = 𝛼i N(x; 𝜇$, 𝜎$)
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Unsupervised learning

Input: {x1, x2, !, xm}, each xi a real valued, d dimensional vector
Goal: Label each input point

Assumption: Suppose the points were generated according to 
the Gaussian mixture model

P(li ) P(x | y = li ) = 𝛼i N(x; 𝜇$, 𝜎$)

(For now), simplify the problem by assuming that 𝛼i are all equal 
to 1/K and 𝜎$ are all the identity matrix
• All labels are equally likely
• The jth input feature for label li is drawn independently from a 

Gaussian with mean 𝜇$( and variance one
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Mixture of Gaussians

Given an example (x, y), we can compute its likelihood 
under the model

We only have the points {x1, x2, !, xm}
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For each input point, probability that it belongs to a 
particular label

125

Parameters = all the ¹’s

E-step: Given an estimate of the ¹’s



E-step: Given an estimate of the ¹’s

For each input point, probability that it belongs to a 
particular label
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Because we assume that the 
points are generated from a 
Gaussian mixture model  



E-step: Given an estimate of the ¹’s

For each input point, probability that it belongs to a 
particular label
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E-step: Given an estimate of the ¹’s

For each input point, probability that it belongs to a 
particular label
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This is a distribution over the 
labels for point xi

l1 l2 l3 l4 l5 l6

Hard EM uses only the highest scoring 
label for the M step

l1 l2 l3 l4 l5 l6

0 0 0 0 1 0



E-Step in hard EM

For each point, assign its label to be the one with the 
highest probability according to the current parameters

129



E-Step in hard EM (for mixture of gaussians)

For each point, assign its label to be the one with the 
highest probability according to the current parameters
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E-Step in hard EM (for mixture of gaussians)

For each point, assign its label to be the one with the 
highest probability according to the current parameters
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E-Step in hard EM (for mixture of gaussians)

For each point, assign its label to be the one with the 
highest probability according to the current parameters

Or equivalently: Find the label, whose mean is closest 
in Euclidean distance to the point
Let us call this label yi for the point xi

132



M-step for mixture of Gaussians

Goal

Step 1: Let us write down log P(xi, y | parameters)
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This comes from the the definition of our model



M-step for mixture of Gaussians

Goal

Step 2: Let us write down E[log P(xi, y | parameters)]

In the general case, we will have a distribution over the 
labels Qi(y)

For hard EM, this distribution is zero everywhere except 
at yi, where it is one
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M-step for mixture of Gaussians

Goal

Step 3: Maximization
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M-step for mixture of Gaussians

Goal

Step 3: Maximization
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Solution:

¹l = Mean of points assigned with label l



Hard EM for GMMs: Full algorithm

1. Initialize the means ¹1, ¹2, !, ¹K randomly 
– these are d dimensional vectors

2. Loop:
1. Label each point as the mean closest to it

2. For every label l:
• Re-compute the mean ¹l as the average of all points that were 

assigned to it

3. Return the final labels

137

Input: A set of d-dimensional points {x1, x2, !, xm} and K, the number of labels



Hard EM for GMMs: Full algorithm

1. Initialize the means ¹1, ¹2, !, ¹K randomly 
– these are d dimensional vectors

2. Loop:
1. Label each point as the mean closest to it

2. For every label l:
• Re-compute the mean ¹l as the average of all points that were 

assigned to it

3. Return the final labels
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Input: A set of d-dimensional points {x1, x2, !, xm} and K, the number of labels

This is the popular 
K-Means algorithm 
for clustering



K means example
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Suppose K = 3



K means example
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Suppose K = 3

Initialize: Pick random means



K means example
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Suppose K = 3

Iteration 1: Assign points to means



K means example
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Suppose K = 3

Iteration 1: Re-estimate the means



K means example
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Suppose K = 3

Iteration 1: Re-estimate the means



K means example
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Suppose K = 3

Iteration 1: Re-estimate the means



K means example
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Suppose K = 3

Iteration 2: Re-label points



K means example
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Suppose K = 3

Iteration 2: Re-label points



K means example
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Suppose K = 3

Iteration 2: Re-estimate the means



K means example
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Suppose K = 3

Iteration 2: Re-estimate the means



K means example
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Suppose K = 3

Iteration 2: Re-estimate the means



K means example
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Suppose K = 3

Iteration 3: Re-label the points



K means example
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Suppose K = 3

Iteration 3: Re-label the points



K means example
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Suppose K = 3

Iteration 4: Re-estimate the means



Unsupervised learning

• Learning with missing labels/latent variables/hidden labels
– Some examples could be labeled and some unlabeled – semi-

supervised learning

• The EM algorithm
– Assume a particular model for the joint distribution, and iteratively 

maximize expected log likelihood
– A recipe for defining an algorithm

• Effectively this is clustering
– Many, many, many clustering algorithms (a full semester’s worth)
– We saw K-means, which is equivalent to Hard EM with the Gaussian 

mixture model
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