
The vanishing gradient problem revisited: 
Highway and residual connections



Revisiting the vanishing gradient problem

Stems from the fact that the derivative of the activation is between zero 
and one…

… and as the number steps of gradient computation grows, these get 
multiplied

Not just applicable for LSTMs

1



Revisiting the vanishing gradient problem

Not just applicable for LSTMs

2

Inputs

Outputs 

Many layers 
in between

Loss



Revisiting the vanishing gradient problem

Not just applicable for LSTMs

3

Inputs

Outputs 

Many layers 
in between

Loss

Gradient vanishes as 
the depth grows



Revisiting the vanishing gradient problem

Not just applicable for LSTMs

4

Inputs

Outputs 

Many layers 
in between

Loss

Gradient vanishes as 
the depth grows

The loss is no longer 
influenced by the 
inputs for very deep 
networks!



Revisiting the vanishing gradient problem

Not just applicable for LSTMs

5

Inputs

Outputs 

Many layers 
in between

Loss

Gradient vanishes as 
the depth grows

The loss is no longer 
influenced by the 
inputs for very deep 
networks!

Can we use ideas from LSTMs/GRUs to fix this problem?



Revisiting the vanishing gradient problem

Intuition: Consider a single layer

𝒍! = 𝑔 𝒍!"#𝐖+ 𝒃!"#

6

The t-1th layer is used to calculate the value of the tth layer



Revisiting the vanishing gradient problem

Intuition: Consider a single layer

𝒍! = 𝑔 𝒍!"#𝐖+ 𝒃!"#

𝒍! = 𝒍!"# + 	𝑔(𝒍!"#𝐖+ 𝒃!"#)

7

Instead of a non-linear update that directly 
calculates the next layer, let us try a linear update



Revisiting the vanishing gradient problem

Intuition: Consider a single layer

𝒍! = 𝑔 𝒍!"#𝐖+ 𝒃!"#

𝒍! = 𝒍!"# + 	𝑔(𝒍!"#𝐖+ 𝒃!"#)

8

Instead of a non-linear update that directly 
calculates the next layer, let us try a linear update

The gradients can be propagated all the way to the input without attenuation



Residual networks

Each layer is reformulated as

𝒍! = 𝒍!"# + 	𝑔(𝒍!"#𝐖+𝒃!"#)

9

𝒍!"#

𝑔(𝒍!"#𝐖+ 𝒃!"#)

𝒍!

Original layer

[He et al 2015]



Residual networks

Each layer is reformulated as

𝒍! = 𝒍!"# + 	𝑔(𝒍!"#𝐖+𝒃!"#)

10

[He et al 2015]

𝒍!"#

𝑔(𝒍!"#𝐖+ 𝒃!"#)

𝒍!

𝒍!"#

𝑔(𝒍!"#𝐖+ 𝒃!"#)

+

𝒍!

Original layer Residual connection



Residual networks

Each layer is reformulated as

𝒍! = 𝒍!"# + 	𝑔(𝒍!"#𝐖+𝒃!"#)

The computation graph g is not trained to predict the next layer

It predicts an update to the current layer value instead 

That is, it can be seen as a residual function (that is the difference between the layers)

11

[He et al 2015]



Highway connections

Extend the idea, using gates to stabilize learning

• First, compute a proposed update
𝐂 = 	𝑔(𝒍!"#𝐖+ 𝒃!"#)

• Next, compute how much of the proposed update should be retained
𝐓 = 𝜎 𝐥!"#𝐖$ + 𝐛$

• Finally, compute the actual value of the next layer

𝒍! = 1 − 𝐓 ⊙ 𝒍!"# + 𝐓⊙ 𝐂

12

[Srivastava et al 2015]



Highway connections

Extend the idea, using gates to stabilize learning

• First, compute a proposed update
𝐂 = 	𝑔(𝒍!"#𝐖+ 𝒃!"#)

• Next, compute how much of the proposed update should be retained
𝐓 = 𝜎 𝐥!"#𝐖$ + 𝐛$

• Finally, compute the actual value of the next layer

𝒍! = 1 − 𝐓 ⊙ 𝒍!"# + 𝐓⊙ 𝐂

13

[Srivastava et al 2015]



Highway connections

Extend the idea, using gates to stabilize learning

• First, compute a proposed update
𝐂 = 	𝑔(𝒍!"#𝐖+ 𝒃!"#)

• Next, compute how much of the proposed update should be retained
𝐓 = 𝜎 𝐥!"#𝐖$ + 𝐛$

• Finally, compute the actual value of the next layer

𝒍! = 1 − 𝐓 ⊙ 𝒍!"# + 𝐓⊙ 𝐂

14

[Srivastava et al 2015]



Highway connections

Extend the idea, using gates to stabilize learning

• First, compute a proposed update
𝐂 = 	𝑔(𝒍!"#𝐖+ 𝒃!"#)

• Next, compute how much of the proposed update should be retained
𝐓 = 𝜎 𝐥!"#𝐖$ + 𝐛$

• Finally, compute the actual value of the next layer

𝒍! = 1 − 𝐓 ⊙ 𝒍!"# + 𝐓⊙ 𝐂

15

[Srivastava et al 2015]



Why residual/highway connections?

• As networks become deeper, or as sequences get larger, we can no 
longer hope for gradients to be carried through the network

• If we want to capture long-range dependencies with the input, we need 
this mechanism

• More generally, a blueprint of an idea that can be combined with your 
neural network model if it gets too deep

16


