
Language Modeling

Overview

• What is a language model?

• How do we evaluate language models?

• Traditional language models

• Feedforward neural networks for language modeling

• Recurrent neural networks for language modeling

1

Overview

• What is a language model?

• How do we evaluate language models?

• Traditional language models

• Feedforward neural networks for language modeling

• Recurrent neural networks for language modeling

2

Language models

What is the probability of a sentence?
– Grammatically incorrect or rare sentences should be more improbable
– Or equivalently, what is the probability of a word following a sequence of words?

“The cat chased a mouse” vs “The cat chased a turnip”

Can be framed as a sequence modeling task

Two classes of models
– Count-based: Markov assumptions with smoothing
– Neural models

3

Language models

What is the probability of a sentence?
– Grammatically incorrect or rare sentences should be more improbable
– Or equivalently, what is the probability of a word following a sequence of words?

“The cat chased a mouse” vs “The cat chased a turnip”

Can be framed as a sequence modeling task

Two classes of models
– Count-based: Markov assumptions with smoothing
– Neural models

4

Language models

What is the probability of a sentence?
– Grammatically incorrect or rare sentences should be more improbable
– Or equivalently, what is the probability of a word following a sequence of words?

“The cat chased a mouse” vs “The cat chased a turnip”

Can be framed as a sequence modeling task

Two classes of models
– Count-based: Markov assumptions with smoothing
– Neural models

5We have seen this difference before. In this lecture, we will look at some details

Overview

• What is a language model?

• How do we evaluate language models?

• Traditional language models

• Feedforward neural networks for language modeling

• Recurrent neural networks for language modeling

6

Evaluating language models

Extrinsic evaluation
• A good language model should help with an end task such as machine translation
– If we have a MT system that uses language models to produce outputs…
– …a better language model can produce better outputs

7

Evaluating language models

Extrinsic evaluation
• A good language model should help with an end task such as machine translation
– If we have a MT system that uses language models to produce outputs…
– …a better language model can produce better outputs

• To evaluate a language model, is a downstream task needed?
– Can be slow, depends on the quality of the downstream system

8

Evaluating language models

Extrinsic evaluation
• A good language model should help with an end task such as machine translation
– If we have a MT system that uses language models to produce outputs…
– …a better language model can produce better outputs

• To evaluate a language model, is a downstream task needed?
– Can be slow, depends on the quality of the downstream system

9

Can we define an intrinsic evaluation?

What is a good language model?

• Should prefer good sentences to bad ones
– It should higher probabilities to valid/grammatical/frequent sentences

– It should assign lower probabilities to invalid/ungrammatical/rare sentences

• Can we construct an evaluation metric that directly measures this?

10

What is a good language model?

• Should prefer good sentences to bad ones
– It should higher probabilities to valid/grammatical/frequent sentences

– It should assign lower probabilities to invalid/ungrammatical/rare sentences

• Can we construct an evaluation metric that directly measures this?
Answer: Perplexity

11

Perplexity

A good language model should assign high probability to sentences that occur in the
real world
– Need a metric that captures this intuition, but normalizes for length of sentences

12

Perplexity

A good language model should assign high probability to sentences that occur in the
real world
– Need a metric that captures this intuition, but normalizes for length of sentences

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃 𝑤!𝑤"𝑤#⋯𝑤$
%!$

13

Perplexity

A good language model should assign high probability to sentences that occur in the
real world
– Need a metric that captures this intuition, but normalizes for length of sentences

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃 𝑤!𝑤"𝑤#⋯𝑤$
%!$

14

Lower perplexity corresponds to higher probability

Example: Uniformly likely words

Suppose we have n words in a sentence, and they are all independent and
uniform!
– Would be a strange language….

 Perplexity = 𝑃 𝑤!𝑤"𝑤#⋯𝑤$
%!"

 = !
$

$ %!"
= 	𝑛

15

Perplexity of history based models

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃 𝑤!𝑤"𝑤#⋯𝑤$
%!$

For a history based model, we have

𝑃 𝑤!⋯𝑤$ =0
&

𝑃 𝑤& 𝑤!:&%!)

16

Perplexity of history based models

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 0
&

𝑃 𝑤& 𝑤!:&%!)
%!$

17

Perplexity of history based models

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 0
&

𝑃 𝑤& 𝑤!:&%!)
%!$

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 	2()*# ∏$, -$ -!:$&!)
&!"

18

Perplexity of history based models

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 0
&

𝑃 𝑤& 𝑤!:&%!)
%!$

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 	2()*# ∏$, -$ -!:$&!)
&!"

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2 %!$ ∑$ ()*# , 𝑤& 𝑤!:&%!

19

Perplexity of history based models

Given a sentence 𝑤!𝑤"𝑤#⋯𝑤$, define the perplexity of a language model as

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 0
&

𝑃 𝑤& 𝑤!:&%!)
%!$

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 	2()*# ∏$, -$ -!:$&!)
&!"

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2 %!$ ∑$ ()*# , 𝑤& 𝑤!:&%!

20

Average number of bits needed to encode the sentence

Evaluating language models

Several benchmark sets available
– Penn Treebank Wall Street Journal corpus

• Standard preprocessing by Mikolov
• Vocabulary size: 10K words
• Training size: 890K tokens

– Billion Word Benchmark
• English news text [Chelba, et al 2013]
• Vocabulary size: ~793K
• Training size: ~800M tokens

Standard methodology of training on the training set and evaluating on the test set
– Some papers also continue training on the evaluation set because no labels needed

21

Overview

• What is a language model?

• How do we evaluate language models?

• Traditional language models

• Feedforward neural networks for language modeling

• Recurrent neural networks for language modeling

22

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

23

Required counting n-grams

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption

𝑃 𝑤!𝑤"⋯𝑤# ≈'
$

𝑃(𝑤$%! ∣ 𝑤$&':$)

24

Required counting n-grams

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption

𝑃 𝑤!𝑤"⋯𝑤# ≈'
$

𝑃(𝑤$%! ∣ 𝑤$&':$)

25

Required counting n-grams

Need to get this from data

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption
𝑃 𝑤!𝑤"⋯𝑤# ≈-

$

𝑃(𝑤$%! ∣ 𝑤$&':$)

𝑃 𝑤$%! 𝑤$&':$ = 123#4 5!"#:!,5!%&
123#4(5!"#:!)

26

Required counting n-grams

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption
𝑃 𝑤!𝑤"⋯𝑤# ≈-

$

𝑃(𝑤$%! ∣ 𝑤$&':$)

𝑃 𝑤$%! 𝑤$&':$ = 123#4 5!"#:!,5!%&
123#4(5!"#:!)

27

Required counting n-grams

The problem: Zeros in the counts.

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption
𝑃 𝑤!𝑤"⋯𝑤# ≈-

$

𝑃(𝑤$%! ∣ 𝑤$&':$)

𝑃 𝑤$%! 𝑤$&':$ = 123#4 5!"#:!,5!%&
123#4(5!"#:!)

28

Required counting n-grams

The problem: Zeros in the counts.
The solution: Smoothing

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption
𝑃 𝑤!𝑤"⋯𝑤# ≈-

$

𝑃(𝑤$%! ∣ 𝑤$&':$)

𝑃 𝑤$%! 𝑤$&':$ = 123#4 5!"#:!,5!%& %7
123#4 5!"#:! %7|9|

29

Required counting n-grams

Many different methods for smoothing. Eg: additive smoothing, with vocabulary V

Traditional language models

The goal: To compute 𝑃(𝑤!𝑤"⋯𝑤#) for any sequence of words

The (k+1)th order Markov assumption
𝑃 𝑤!𝑤"⋯𝑤# ≈-

$

𝑃(𝑤$%! ∣ 𝑤$&':$)

𝑃 𝑤$%! 𝑤$&':$ = 123#4 5!"#:!,5!%& %7
123#4 5!"#:! %7|9|

30

Required counting n-grams

Many different methods for smoothing. Eg: additive smoothing, with vocabulary V

The most effective non-neural smoothing method: modified Knesser Ney smoothing

Traditional language models

• Pros:
– Easy to train
– Can scale to large corpora (with careful choice of algorithms)

• Heafield et al have written about this extensively
– Work reasonably well

• Cons:
– Smoothing techniques are tricky to implement or modify

• Need to implement backoff, etc
– Scaling to large ngrams is expensive
– Need to have seen words to generalize

• After seeing “red ties”, “green ties”, we want to assign high probability to “blue ties”

31

Traditional language models

• Pros:
– Easy to train
– Can scale to large corpora (with careful choice of algorithms)

• Heafield et al have written about this extensively
– Work reasonably well

• Cons:
– Smoothing techniques are tricky to implement or modify

• Need to implement backoff, etc
– Scaling to large ngrams is expensive
– Need to have seen words to generalize

• After seeing “red ties”, “green ties”, we want to assign high probability to “blue ties”

32

Evaluation (perplexity)

• Penn Treebank
– Kneser-Ney 5-gram: 140 ppl

• Billion Word Corpus
– Kneser-Ney 5-gram: 67.6 ppl

33

Overview

• What is a language model?

• How do we evaluate language models?

• Traditional language models

• Feedforward neural networks for language modeling

• Recurrent neural networks for language modeling

34

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

35

[Bengio et al 2003]

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

36

[Bengio et al 2003]

𝑤! 𝑤" 𝑤#⋯

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

37

[Bengio et al 2003]

𝑤! 𝑤" 𝑤#⋯

Embed each word

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

38

[Bengio et al 2003]

𝑤! 𝑤" 𝑤#⋯

Concatenate to get 𝐱

Embed each word

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

39

[Bengio et al 2003]

𝑤! 𝑤" 𝑤#⋯

𝐡 = 𝑔(𝐱𝐖𝟏 + 𝐛𝟏)

Concatenate to get 𝐱

Embed each word

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

40

[Bengio et al 2003]

𝑤! 𝑤" 𝑤#⋯

𝐡 = 𝑔(𝐱𝐖𝟏 + 𝐛𝟏)

softmax(𝐡𝑾𝟐 + 𝒃𝟐)

Concatenate to get 𝐱

Embed each word

Feedforward neural language model

• Input: A sequence of k words 𝑤!:' in a window
• Output: A probability distribution over the next word

41

[Bengio et al 2003]

𝑤! 𝑤" 𝑤#⋯

𝐡 = 𝑔(𝐱𝐖𝟏 + 𝐛𝟏)

softmax(𝐡𝑾𝟐 + 𝒃𝟐)

Concatenate to get 𝐱

Embed each word

= 𝑃(𝑤#&! ∣ 𝑤!:#)	

Feedforward neural language model

• Training data
– K-grams from a corpus
– Vocabulary includes all words in the training data

• Also extra symbols for unknown words, start and end of sentences

• Trained with backpropagation

• Parameters:
– The word embedding matrix
– The W’s and b’s

42

Computational shortcuts

• The final softmax softmax(𝐡𝑾𝟐 + 𝒃𝟐) is over the entire vocabulary
– Can be slow

• Solutions:
– Hierarchical softmax: An approximation that structures the softmax computation

as traversing a tree with |V| nodes
• O(log|V|) instead of O(|V|)

– Noise contrastive estimation: Replacing the softmax with a binary classifier (as we
saw with word2vec)

43

Feedforward neural language model

• Pros:
– Better perplexity
– Scales better to larger ngrams
– Flexible architecture that admits skipgrams, etc

• Cons:
– Computationally expensive
– Doesn’t improve translation quality over a Knesser-Ney smoothed model

• Perhaps because it over-generalizes
• Example: after seeing “yellow bananas” and “green bananas”, it may assign a high probability

to “blue bananas”
• Rigidity of a traditional language model may be preferred

44

Feedforward neural language model

• Pros:
– Better perplexity
– Scales better to larger ngrams
– Flexible architecture that admits skipgrams, etc

• Cons:
– Computationally expensive
– Doesn’t improve translation quality over a Knesser-Ney smoothed model

• Perhaps because it over-generalizes
• Example: after seeing “yellow bananas” and “green bananas”, it may assign a high probability

to “blue bananas”
• Rigidity of a traditional language model may be preferred

45

Evaluation (perplexity)

• Penn Treebank
– Kneser-Ney 5-gram: 140 ppl

• Billion Word Corpus
– Kneser-Ney 5-gram: 67.6 ppl
– Hierarchical softmax + 4-gram: 101.3

46

Overview

• What is a language model?

• How do we evaluate language models?

• Traditional language models

• Feedforward neural networks for language modeling

• Recurrent neural networks for language modeling

47

Recurrent neural network language model

• We are modeling a sequence of words
– Let us use a sequence model for this

• Can use any variant of an RNN
– Vanilla RNN + gradient clipping [Mikolov]
– LSTM, GRU units

• Can also include context from previous sentences or topic from the document
– In both cases, as initial state or as part of input for each word

• We could even model a language sequence of characters
– Or a combination

48

Starting with [Mikolov 2010-]

Samples from a language model

mr. rosen contends that vaccine deficit nearby in
benefit plans to take and william gray but his
capital-gains provision

rural business buoyed by
improved<unk>so<unk>that<unk>up<unk>progres
ss pending went into nielsen visited were issued
soaring searching for an equity giving

a chance affecting price after-tax legislator board
closed down N cents

49

Knesser Ney 5-gram

[Mikolov et al 2010], Penn Treebank

Samples from a language model

mr. rosen contends that vaccine deficit nearby in
benefit plans to take and william gray but his
capital-gains provision

rural business buoyed by
improved<unk>so<unk>that<unk>up<unk>progres
ss pending went into nielsen visited were issued
soaring searching for an equity giving

a chance affecting price after-tax legislator board
closed down N cents

meanwhile american brands issued a new
restructuring mix to<unk>from continuing
operations in the west

the stock over the most results of this is very low
because he could n’t develop the

peter<unk>chief executive officer says the family
ariz. is left get to be working with the dollar

50

Knesser Ney 5-gram RNN language model

[Mikolov et al 2010], Penn Treebank

Samples from a language model

mr. rosen contends that vaccine deficit nearby in
benefit plans to take and william gray but his
capital-gains provision

rural business buoyed by
improved<unk>so<unk>that<unk>up<unk>progres
ss pending went into nielsen visited were issued
soaring searching for an equity giving

a chance affecting price after-tax legislator board
closed down N cents

meanwhile american brands issued a new
restructuring mix to<unk>from continuing
operations in the west

the stock over the most results of this is very low
because he could n’t develop the

peter<unk>chief executive officer says the family
ariz. is left get to be working with the dollar

51

Knesser Ney 5-gram RNN language model

Note: Perhaps cherry picked
examples … need perplexity or
extrinsic evaluations matter more

[Mikolov et al 2010], Penn Treebank

Evaluation (perplexity)

• Penn Treebank
– Kneser-Ney 5-gram: 147.8
– Vanilla RNN 4gram [Mikolov & Zweig 2012]: 142.1
– Vanilla RNN 4gram + topic model [Mikolov & Zweig 2012]: 126.4
– LSTM [Zaremba et al 2014]: 82.7
– Variational LSTM [Gal & Ghahramani 2016]: 78.6
– Other variants of LSTM significantly improve results:

• AWD-LSTM + ensemble: 54.44

52

Evaluation (perplexity)

• Penn Treebank
– Kneser-Ney 5-gram: 147.8
– Vanilla RNN 4gram [Mikolov & Zweig 2012]: 142.1
– Vanilla RNN 4gram + topic model [Mikolov & Zweig 2012]: 126.4
– LSTM [Zaremba et al 2014]: 82.7
– Variational LSTM [Gal & Ghahramani 2016]: 78.6
– Other variants of LSTM significantly improve results:

• AWD-LSTM + ensemble: 54.44

• Billion Word Corpus
– Kneser-Ney 5-gram: 67.6
– Hierarchical softmax + 4-gram: 101.3
– Vanilla RNN 9gram: 51.3
– LSTM [Jozefowicz et al 2016, Grave et al 2016]: ~43.7
– Variants of LSTMs significantly improve perplexity

• 10 LSTM+CNN inputs + SNM10-SKIP [Jozefowicz et al., 2016]: 23.7

53

Evaluation (perplexity)

• Penn Treebank
– Kneser-Ney 5-gram: 147.8
– Vanilla RNN 4gram [Mikolov & Zweig 2012]: 142.1
– Vanilla RNN 4gram + topic model [Mikolov & Zweig 2012]: 126.4
– LSTM [Zaremba et al 2014]: 82.7
– Variational LSTM [Gal & Ghahramani 2016]: 78.6
– Other variants of LSTM significantly improve results:

• AWD-LSTM + ensemble: 54.44

• Billion Word Corpus
– Kneser-Ney 5-gram: 67.6
– Hierarchical softmax + 4-gram: 101.3
– Vanilla RNN 9gram: 51.3
– LSTM [Jozefowicz et al 2016, Grave et al 2016]: ~43.7
– Variants of LSTMs significantly improve perplexity

• 10 LSTM+CNN inputs + SNM10-SKIP [Jozefowicz et al., 2016]: 23.7

54

As of 2023: The best language models
(in terms of perplexity) are based on
transformer neural networks.

E.g. Transformer-XL Large gets 21.8
perplexity on the Billion Word Corpus

We will revisit language models after
we see transformers

Examples from a Character-level RNN

55https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampled one character at a time (which becomes the next input)

3 layer RNN with 512 hidden units on Shakespeare

What do we get by using an LSTM/GRU?

The hidden representation can remember where we are in the text
– Can remember different aspects of this
– Doesn’t have to remember only histories

56

Examples of LSTM hidden state in a language model

57

Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and
understanding recurrent networks." arXiv preprint arXiv:1506.02078 (2015).

Summary: Language models

• Goal:
– Probabilities of sentences
– Various uses. For example, can be used to rank generated text as being valid or not

• Two broad classes of approaches
– Traditional language model: based on counts of words in context
– Neural language models: We saw RNNs. Today, driven by Transformers
– Both need a lot of data to train

• Evaluated using perplexity
– Currently, neural language models seem to be the best

• Modern language models are asked to do more than just generate words
– They are evaluated for their ability to answer questions, chat, etc
– We will see language models one more time after we encounter transformers

58

