
Machine Learning

Logistic Regression
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Where are we?

We have seen the following ideas

– Linear models

– Learning as loss minimization

– Bayesian learning criteria (MAP and MLE estimation)
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This lecture

• Logistic regression

• Training a logistic regression classifier

• Back to loss minimization
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• Training a logistic regression classifier

• Back to loss minimization
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Logistic Regression: Setup

• The setting

– Binary classification

– Inputs: Feature vectors 𝐱 ∈ ℜ𝑑

– Labels: 𝑦 ∈ {−1, +1}

• Training data

–  S = {(𝐱𝑖 , 𝑦𝑖)}, consisting of 𝑚 examples
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Classification, but…

The output 𝑦 is discrete: Either −1 or +1

Instead of predicting a label, let us try to predict P(𝑦 = +1 ∣ 𝐱)

Expand hypothesis space to functions whose output is [0 − 1]

• Original problem: ℜ𝑑 → {−1, +1}

• Modified problem:  ℜ𝑑 → [0 − 1]

• Effectively make the problem a regression problem

    Many hypothesis spaces possible
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Classification, but…

The output 𝑦 is discrete: Either −1 or +1

Instead of predicting a label, let us try to predict P(𝑦 = +1 ∣ 𝐱)

Expand hypothesis space to functions whose output is in the 
range [0, 1]

• Original problem: ℜ𝑑 → {−1, +1}

• Modified problem:  ℜ𝑑 → [0, 1]

• Effectively, make the problem a regression problem

    Many hypothesis spaces possible
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The Sigmoid function

The hypothesis space for logistic regression: All 
functions of the form

That is, a linear function, composed with a sigmoid 
function (the logistic function) ¾

What is the domain 
and the range of the 
sigmoid function?

This is a reasonable choice. We will see why later
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The hypothesis space for logistic regression: All 
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The Sigmoid function

The hypothesis space for logistic regression: All 
functions of the form

That is, a linear function, composed with a sigmoid 
function (the logistic function), defined as 

What is the domain 
and the range of the 
sigmoid function?

This is a reasonable choice. We will see why later
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The Sigmoid function

¾(z)

z

11



The Sigmoid function

12

What is its derivative with respect to z?



The Sigmoid function
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What is its derivative with respect to z?



Predicting probabilities

According to the logistic regression model, we have
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Predicting probabilities

According to the logistic regression model, we have

Or equivalently
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Predicting probabilities

According to the logistic regression model, we have

Or equivalently
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Note that we are directly modeling 
𝑃(𝑦 | 𝑥) rather than 𝑃(𝑥 |𝑦) and 𝑃(𝑦)



Predicting a label with logistic regression

• Compute 𝑃(𝑦 = +1 | 𝑥;  𝐰)

• If this is greater than half, predict +1 else predict −1

– What does this correspond to in terms of 𝐰𝑇𝐱?
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Predicting a label with logistic regression

• Compute 𝑃(𝑦 = +1 | 𝑥;  𝐰)

• If this is greater than half, predict +1 else predict −1

– What does this correspond to in terms of 𝐰𝑇𝐱?

– Prediction = sgn(𝐰𝑇𝐱)
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This lecture

• Logistic regression

• Training a logistic regression classifier

– First: Maximum likelihood estimation

– Then: Adding priors → Maximum a Posteriori estimation

• Back to loss minimization
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Maximum likelihood estimation  

Let’s address the problem of learning

• Training data
–  S = {(𝐱𝑖 , 𝑦𝑖)}, consisting of 𝑚 examples

• What we want
– Find a weight vector 𝐰 such that P(S ∣ 𝐰) is maximized

– We know that our examples are drawn independently and 
are identically distributed (i.i.d)

– How do we proceed?
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Maximum likelihood estimation 
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The usual trick: Convert products to sums by taking log

Recall that this works only because log is an increasing 
function and the maximizer will not change

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)



Maximum likelihood estimation 
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Equivalent to solving

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

max
𝐰



𝑖

𝑚

log 𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)



Maximum likelihood estimation 
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But (by definition) we know that

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

max
𝐰



𝑖

𝑚

log 𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

𝑃 𝑦𝑖 𝐰, 𝐱𝑖 = 𝜎 𝑦𝑖𝐰𝑇𝐱𝑖 =
1

1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖)



Maximum likelihood estimation 
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argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

max
𝐰



𝑖

𝑚

log 𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp(−yi𝐰
𝑇𝐱𝑖)

Equivalent to solving

max
𝐰



𝑖

𝑚

−log 1 + exp −𝑦𝑖𝐰𝑇𝐱𝑖



Maximum likelihood estimation 

27

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

max
𝐰



𝑖

𝑚

log 𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp(−yi𝐰
𝑇𝐱𝑖)

Equivalent to solving

min
𝐰



𝑖

𝑚

log 1 + exp −𝑦𝑖𝐰𝑇𝐱𝑖

Maximizing a negative function is the same as minimizing the function



Maximum likelihood estimation 
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argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

max
𝐰



𝑖

𝑚

log 𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp(−yi𝐰
𝑇𝐱𝑖)

Equivalent to solving

The goal: Maximum 
likelihood training of a 
discriminative 
probabilistic classifier 
under the logistic 
model for the posterior 
distribution. 

min
𝐰



𝑖

𝑚

log 1 + exp −𝑦𝑖𝐰𝑇𝐱𝑖



Maximum likelihood estimation 
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argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

ෑ

𝑖=1

𝑚

𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

max
𝐰



𝑖

𝑚

log 𝑃 𝑦𝑖 𝐱𝑖 , 𝐰)

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp(−yi𝐰
𝑇𝐱𝑖)

Equivalent to solving

min
𝐰



𝑖

𝑚

log 1 + exp −𝑦𝑖𝐰𝑇𝐱𝑖

Equivalent to: Training a linear classifier by minimizing the logistic loss. 

The goal: Maximum 
likelihood training of a 
discriminative 
probabilistic classifier 
under the logistic 
model for the posterior 
distribution. 



Maximum a posteriori estimation

We could also add a prior on the weights

Suppose each weight in the weight vector is drawn 
independently from the normal distribution with zero 
mean and standard deviation 𝜎

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2
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MAP estimation for logistic regression
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𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

Let us work through this procedure again



MAP estimation for logistic regression
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𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

What is the goal of MAP estimation? 
(In maximum likelihood estimation, we maximized the likelihood of the data)

Let us work through this procedure again
to see what changes from maximum likelihood 
estimation



MAP estimation for logistic regression
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𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

What is the goal of MAP estimation? 

To maximize the posterior probability of the model given the data (i.e. to find the 
most probable model, given the data)

𝑃 𝐰 𝑆 ∝ 𝑃 𝑆 𝐰 𝑃(𝐰)



MAP estimation for logistic regression
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Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃(𝐰|𝑆) = argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)



MAP estimation for logistic regression
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Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take log to simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log 𝑃(𝐰)



MAP estimation for logistic regression
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Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take log to simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log 𝑃(𝐰)

We have already expanded out the first term.



𝑖

𝑚

−log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖)



MAP estimation for logistic regression
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Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take log to simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log 𝑃(𝐰)



𝑖

𝑚

−log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) + 

𝑗=1

𝑑
−𝑤𝑖

2

𝜎2
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

Expand the log prior



MAP estimation for logistic regression

38

Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take log to simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log 𝑃(𝐰)

max
𝐰



𝑖

𝑚

−log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) + 

𝑗=1

𝑑
−𝑤𝑖

2

𝜎2
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠



MAP estimation for logistic regression
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Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take log to simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log 𝑃(𝐰)

max
𝐰



𝑖

𝑚

−log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) −
1

𝜎2
𝐰𝑇𝐰



MAP estimation for logistic regression
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Learning by solving

𝑝 𝐰 = ෑ

𝑗=1

𝑑

𝑝(𝑤𝑖) = ෑ

𝑗=1

𝑑
1

𝜎 2𝜋
exp

−𝑤𝑖
2

𝜎2

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take log to simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log 𝑃(𝐰)

min
𝐰



𝑖

𝑚

log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) +
1

𝜎2
𝐰𝑇𝐰

Maximizing a negative function is the same as minimizing the function



Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to 
solving

41

min
𝐰



𝑖

𝑚

log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) +
1

𝜎2
𝐰𝑇𝐰



Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to 
solving

42

Where have we seen this before?

min
𝐰



𝑖

𝑚

log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) +
1

𝜎2
𝐰𝑇𝐰



Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to 
solving

43

Where have we seen this before?

Exercise: Write down the stochastic gradient descent (SGD) algorithm for this?

Other training algorithms exist. For example, the LBFGS algorithm is an example of 
a quasi-Newton method. But gradient based methods like SGD and its variants are 
way more commonly used.

min
𝐰



𝑖

𝑚

log(1 + exp(−𝑦𝑖𝐰𝑇𝐱𝑖) +
1

𝜎2
𝐰𝑇𝐰



Logistic regression is…

• A classifier that predicts the probability that the label is 
+1 for a particular input

• The discriminative counter-part of the naïve Bayes 
classifier

• A discriminative classifier that can be trained via MAP or 
MLE estimation

• A discriminative classifier that minimizes the logistic loss 
over the training set
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This lecture

• Logistic regression

• Training a logistic regression classifier

• Back to loss minimization
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Learning as loss minimization
• The setup 

– Examples x drawn from a fixed, unknown distribution D

– Hidden oracle classifier f labels examples

– We wish to find a hypothesis h that mimics f

• The ideal situation
– Define a function L that penalizes bad hypotheses

– Learning: Pick a function ℎ ∈ 𝐻 to minimize expected loss

• Instead, minimize empirical loss on the training set

46

But distribution D is unknown



Empirical loss minimization

Learning = minimize empirical loss on the training set

47

Is there a problem here?



Empirical loss minimization

Learning = minimize empirical loss on the training set

We need something that biases the learner towards simpler 
hypotheses

• Achieved using a regularizer, which penalizes complex 
hypotheses

48

Is there a problem here? Overfitting! 



Regularized loss minimization

• Learning:

• With linear classifiers:

• What is a loss function?

– Loss functions should penalize mistakes

– We are minimizing average loss over the training data

• What is the ideal loss function for classification?

49

(using ℓ2 regularization)



The 0-1 loss

Penalize classification mistakes between true label y and 
prediction y’ 

• For linear classifiers, the prediction y’ = sgn(wTx) 
– Mistake if 𝑦 𝒘𝑇𝒙 ≤  0

Minimizing 0-1 loss is intractable. Need surrogates 

50



The loss function zoo

Many loss functions exist

– Perceptron loss

– Hinge loss (SVM)

– Exponential loss (AdaBoost)

– Logistic loss (logistic regression)
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The loss function zoo
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The loss function zoo

53

Zero-one



The loss function zoo
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Zero-oneZero-one

Perceptron



The loss function zoo
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Zero-one

Perceptron

Hinge: SVM



The loss function zoo
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Zero-one

Perceptron

Hinge: SVM

Logistic regression



The loss function zoo
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Zoomed out



The loss function zoo
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Zoomed out even more



The loss function zoo
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Zoomed out much more



This lecture

• Logistic regression

• Training a logistic regression classifier

• Back to loss minimization

• Connection to Naïve Bayes
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Naïve Bayes and Logistic regression

Remember that the naïve Bayes decision is a linear function

Here, the P’s represent the Naïve Bayes posterior distribution, 
and w can be used to calculate the priors and the likelihoods.

 

That is, 𝑃(𝑦 =  1 | 𝐰, 𝐱) is computed using

 𝑃(𝐱 | 𝑦 = 1, 𝐰) and 𝑃(𝑦 = 1 | 𝐰)

 

61

log
𝑃(𝑦 = −1|𝐱, 𝐰)

𝑃(𝑦 = +1|𝐱, 𝐰)
= 𝐰𝑇𝐱



Naïve Bayes and Logistic regression

Remember that the naïve Bayes decision is a linear function

But we also know that 𝑃 𝑦 = +1 𝐱, 𝐰 = 1 − 𝑃(𝑦 = −1|𝐱, 𝐰)

62

log
𝑃(𝑦 = −1|𝐱, 𝐰)

𝑃(𝑦 = +1|𝐱, 𝐰)
= 𝐰𝑇𝐱



Naïve Bayes and Logistic regression

Remember that the naïve Bayes decision is a linear function

But we also know that 𝑃 𝑦 = +1 𝐱, 𝐰 = 1 − 𝑃(𝑦 = −1|𝐱, 𝐰)

Substituting in the above expression, we will get

63

log
𝑃(𝑦 = −1|𝐱, 𝐰)

𝑃(𝑦 = +1|𝐱, 𝐰)
= 𝐰𝑇𝐱

𝑃 𝑦 = +1 𝐰, 𝐱 = 𝜎 𝐰𝑇𝐱 =
1

1 + exp(−𝐰𝑇𝐱)

Exercise: Show this formally



Naïve Bayes and Logistic regression

Remember that the naïve Bayes decision is a linear function

But we also know that 𝑃 𝑦 = +1 𝐱, 𝐰 = 1 − 𝑃(𝑦 = −1|𝐱, 𝐰)

Substituting in the above expression, we get

64

log
𝑃(𝑦 = −1|𝐱, 𝐰)

𝑃(𝑦 = +1|𝐱, 𝐰)
= 𝐰𝑇𝐱

𝑃 𝑦 = +1 𝐰, 𝐱 = 𝜎 𝐰𝑇𝐱 =
1

1 + exp(−𝐰𝑇𝐱)

That is, both naïve Bayes and logistic regression try to 
compute the same posterior distribution over the outputs

Naïve Bayes is a generative model.

Logistic Regression is the discriminative version.
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