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Linear models

How  good is a learning 
algorithm?

Online 
learning

PAC,
Empirical Risk 
Minimization

Perceptron, 
Winnow

Support Vector 
Machines
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Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The 
Halving algorithm

• Examples

• Representations and ease of learning
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Coming up…

• Mistake-driven learning

• Learning algorithms for learning a linear function over 
the feature space
– Perceptron  (with many variants)
– General Gradient Descent view

Issues to watch out for
– Importance of Representation
– Complexity of Learning
– More about features
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Motivation

Consider a learning problem in a very high dimensional space
𝑥!, 𝑥", ⋯ , 𝑥!######

And assume that the function space is very sparse (the function of 
interest depends on a small number of attributes.)

𝑓 = 𝑥" ∧ 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥!##

• Can we develop an algorithm that depends only weakly on the  
dimensionality and mostly on the number of relevant attributes?

• How should we represent the hypothesis? 
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An illustration of mistake driven learning
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Learner

Current 
hypothesis ℎ!

One example: x Prediction ℎ!(x)

Loop forever:
1. Receive example x

2. Make a prediction using the current hypothesis ℎ!(x) 

3. Receive the true label for x. 

4. If ℎ!(x) is not correct, then:
• Update ℎ! to ℎ!"#
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Learner

Current 
hypothesis ℎ!

One example: x Prediction ℎ!(x)

Loop forever:
1. Receive example x

2. Make a prediction using the current hypothesis ℎ!(x) 

3. Receive the true label for x. 

4. If ℎ!(x) is not correct, then:
• Update ℎ! to ℎ!"#

Only need to define how prediction and update behave

Can such a simple scheme work? How do we quantify what “work” means?



Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol: 
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of 

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made 

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if 
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛
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Learnability in the mistake bound model

• Algorithm 𝐴 is a mistake bound algorithm for the concept 
class 𝐶 if 𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛
– That is, the maximum number of mistakes it makes for any sequence 

of inputs (perhaps even an adversarially chosen one) is polynomial in 
the dimensionality
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there exists an algorithm that makes a polynomial number of 
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• Not the most general setting for online learning
• Not the most general metric 
• Other metrics: Regret, cumulative loss



Online Learning

• No assumptions about the distribution of examples

• Examples are presented to the learning algorithm in a 
sequence. Could be adversarial! 

For each example:
1. Learner gets an unlabeled example 
2. Learner makes a prediction
3. Then, the true label is revealed

• In the mistake bound model, we only count the number 
of mistakes

26



Online Learning

• Simple and intuitive model, widely applicable

• Important in the case of very large data sets, when the 
data cannot fit memory (streaming data)

• Evaluation: We will try to make the smallest number of 
mistakes in the long run.

– Some things to think about: 
• What is the relation to the “real” goal? What is the real goal of 

learning?
• Does online learning generate a hypothesis that does well on 

previously unseen data?
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Online/Mistake Bound Learning

• No notion of data distribution; a worst case model

• No (or not much) memory: get example → update hypothesis → get 
rid of it

• Drawbacks: 
– Too simple  
– Global behavior: not clear when will the mistakes be made

• Advantages: 
– Simple
– Many issues arise already in this setting 
– Generic conversion  to other learning models (online-to-batch conversion)
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Is counting mistakes enough?

• Under the mistake bound model, we are not concerned about 
the number of examples needed to learn a function

• We only care about not making mistakes

• Eg: Suppose the learner is presented the same example over 
and over
– Under the mistake bound model, it is okay
– We won’t be able to learn the function, but we won’t make any 

mistakes either!

29



Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The 
Halving algorithm

• Examples

• Representations and ease of learning
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Can mistake bound algorithms exist?

Before getting to a more useful mistake bound algorithm, let’s 
see a proof-of-concept mistake bound algorithm

The Halving algorithm

31



Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• Clearly, 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?
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Is this a mistake bound algorithm? Depends on what 𝐶 is
Can we do better than CON?



The Halving Algorithm

• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

39

• Initialize C0 = C, the set of all possible functions
• When an example x arrives:

• Predict the label for x as 1 if a majority of the functions in Ci  
predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x): 
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci

We will construct a series of sets of functions Ci
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predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x): (i.e error)
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci



The Halving Algorithm

• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

42

• Initialize C0 = C, the set of all possible functions
• When an example x arrives:

• Predict the label for x as 1 if a majority of the functions in Ci  
predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x): (i.e error)
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci

How many mistakes will the Halving algorithm make?



How many mistakes will the Halving algorithm 
make?

Suppose it makes n mistakes. Finally, we will have the final set of 
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect
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The Halving algorithm will make at most log 𝐶 	mistakes



How many mistakes will the Halving algorithm 
make?

Suppose it makes n mistakes. Finally, we will have the final set of 
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect

47

The Halving algorithm will make at most log 𝐶 	mistakes
Questions?



The Halving Algorithm

• Hard to compute 

• In some concept classes, Halving is optimal 
– Eg: for class of all Boolean functions

48



The Halving Algorithm

• Hard to compute 

• In some concept classes, Halving is optimal 
– Eg: for class of all Boolean functions

49

For the most difficult 
concept in the class,

for the most difficult 
sequence of examples,

the optimal mistake bound 
algorithm makes the 
fewest number of mistakes



The Halving Algorithm

• Hard to compute 

• In some concept classes, Halving is optimal 
– Eg: for class of all Boolean functions

• In general, to be optimal, instead of guessing in accordance 
with the majority of the valid concepts, we should guess 
according to the concept group that gives the least number of 
expected mistakes (even harder to compute)

50

For the most difficult 
concept in the class,

for the most difficult 
sequence of examples,

the optimal mistake bound 
algorithm makes the 
fewest number of mistakes



Summary: The Halving algorithm

• A simple algorithm for finite concept spaces
– Stores a set of hypotheses that it iteratively refines

• Receive an input
• Prediction: the label of the majority of hypotheses still under consideration
• Update: If incorrect, remove all inconsistent hypotheses

• Makes O(log|C|) mistakes for a concept class C

• Not always optimal because we care about minimizing the 
number of mistakes in the future!
– What if, instead of eliminating functions that disagree with this 

example, we down-weight them
– Perhaps via multiplicative or additive updates…
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Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The 
Halving algorithm

• Examples

• Representations and ease of learning
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Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = ? ? ?
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ? 

53

2kC(n,k) ≈ 2k nk



Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ? 

54

2kC(n,k) ≈ 2k nk



Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ? 
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Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• There is a practical algorithm that can achieve this bound
– Elimination: Learn from positive examples by eliminating inactive 

literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ? 
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2kC(n,k) ≈ 2k nk

The Halving algorithm is not efficient. 

Elimination is an efficient algorithm that realizes the mistake 
bound of the Halving algorithm



Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• There is a practical algorithm that can achieve this bound
– Elimination: Learn from positive examples by eliminating inactive 

literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ? 
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Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>
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Notation: <example, label>

Sidenote: Elimination algorithm



Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>
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Look for the variables that are present 
in every positive example.

All other variables can be eliminated

Why?

Sidenote: Elimination algorithm



Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be

Sidenote: Elimination algorithm



Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>
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Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be

Sidenote: Elimination algorithm



Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>
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Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be

With the given data, we only learned an 
approximation to the true concept. 

Is it good enough?

Sidenote: Elimination algorithm



Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ? 
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Why?



Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The 
Halving algorithm

• Examples

• Representations and ease of learning
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Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis 

space be the class of conjunctions?
– Theorem [Haussler 1988]:   Given a sample on n attributes that is consistent with a 

conjunctive concept, it is NP-hard to find a pure conjunctive hypothesis that is both 
consistent with the sample and has the minimum number of attributes. 

– Same holds for Disjunctions

• Proof intuition: Reduction to minimum set cover problem
Given a collection of sets that cover X, define a set of examples  so that learning 
the best (dis/con)junction implies a minimal cover.
) We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept 
as a Linear Threshold function.
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In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier



Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis 

space be the class of conjunctions?
• Theorem [Haussler 1988]:   Given a sample on 𝑛 attributes that is 

consistent with a conjunctive concept, it is NP-hard to find a pure 
conjunctive hypothesis that is both consistent with the sample and has the 
minimum number of attributes. 
– Same holds for Disjunctions

• Proof intuition: Reduction to minimum set cover problem
Given a collection of sets that cover X, define a set of examples  so that learning 
the best (dis/con)junction implies a minimal cover.

) We cannot learn the concept efficiently as a (dis/con)junction
• But, we will see that we can do that, if we are willing to learn the concept 

as a Linear Threshold function.

66

In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier



Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis 

space be the class of conjunctions?
• Theorem [Haussler 1988]:   Given a sample on 𝑛 attributes that is 

consistent with a conjunctive concept, it is NP-hard to find a pure 
conjunctive hypothesis that is both consistent with the sample and has the 
minimum number of attributes. 
– Same holds for Disjunctions

• Proof by reduction to minimum set cover problem
⇒ We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept 
as a Linear Threshold function.
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In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier



Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis 

space be the class of conjunctions?
• Theorem [Haussler 1988]:   Given a sample on 𝑛 attributes that is 

consistent with a conjunctive concept, it is NP-hard to find a pure 
conjunctive hypothesis that is both consistent with the sample and has the 
minimum number of attributes. 
– Same holds for Disjunctions

• Proof by reduction to minimum set cover problem
⇒ We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept 
as a Linear Threshold function.
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In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier



Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis 

space be the class of conjunctions?
• Theorem [Haussler 1988]:   Given a sample on 𝑛 attributes that is 

consistent with a conjunctive concept, it is NP-hard to find a pure 
conjunctive hypothesis that is both consistent with the sample and has the 
minimum number of attributes. 
– Same holds for Disjunctions

• Proof by reduction to minimum set cover problem
⇒ We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept 
as a Linear Threshold function.
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In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier



What you should know

• What is the mistake bound model?

• Simple proof-of-concept mistake bound algorithms
– CON: Makes O(|C|) mistakes
– The Halving algorithm

• Can learn a concept with at most log(|C|) mistakes
• Sadly, for non-trivial functions, only useful if we don’t care about storage or 

computation time
• How to apply this bound to simple function classes

• Even for simple Boolean functions (conjunctions and 
disjunctions), learning them as linear threshold units is 
computationally easier
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