
Machine Learning

Online Learning

1
Some slides based on lectures from Dan Roth, Avrim Blum and others

Big picture

2

Big picture

3

Last lecture: Linear models

Big picture

4

Linear models

How good is a learning
algorithm?

Big picture

5

Linear models

How good is a learning
algorithm?

Online
learning

Big picture

6

Linear models

How good is a learning
algorithm?

Online
learning

Perceptron,
Winnow

Big picture

7

Linear models

How good is a learning
algorithm?

Online
learning

PAC,
Empirical Risk
Minimization

Perceptron,
Winnow

Support Vector
Machines

….

….

Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The
Halving algorithm

• Examples

• Representations and ease of learning

8

Coming up…

• Mistake-driven learning

• Learning algorithms for learning a linear function over
the feature space
– Perceptron (with many variants)
– General Gradient Descent view

Issues to watch out for
– Importance of Representation
– Complexity of Learning
– More about features

9

Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The
Halving algorithm

• Examples

• Representations and ease of learning

10

Motivation

Consider a learning problem in a very high dimensional space
𝑥!, 𝑥", ⋯ , 𝑥!######

And assume that the function space is very sparse (the function of
interest depends on a small number of attributes.)

𝑓 = 𝑥" ∧ 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥!##

• Can we develop an algorithm that depends only weakly on the
dimensionality and mostly on the number of relevant attributes?

• How should we represent the hypothesis?

11

Middle Eastern deserts are known for their sweetness

Motivation

Consider a learning problem in a very high dimensional space
𝑥!, 𝑥", ⋯ , 𝑥!######

And assume that the function space is very sparse (the function of
interest depends on a small number of attributes.)

𝑓 = 𝑥" ∧ 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥!##

• Can we develop an algorithm that depends only weakly on the
dimensionality and mostly on the number of relevant attributes?

• How should we represent the hypothesis?

12

An illustration of mistake driven learning

13

Learner

Current
hypothesis ℎ!

One example: x Prediction ℎ!(x)

Loop forever:
1. Receive example x

2. Make a prediction using the current hypothesis ℎ!(x)

3. Receive the true label for x.

4. If ℎ!(x) is not correct, then:
• Update ℎ! to ℎ!"#

An illustration of mistake driven learning

14

Learner

Current
hypothesis ℎ!

One example: x Prediction ℎ!(x)

Loop forever:
1. Receive example x

2. Make a prediction using the current hypothesis ℎ!(x)

3. Receive the true label for x.

4. If ℎ!(x) is not correct, then:
• Update ℎ! to ℎ!"#

Only need to define how prediction and update behave

Can such a simple scheme work? How do we quantify what “work” means?

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

15

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

16

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

17

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

18

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

19

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

20

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

21

Mistake bound algorithms

• Setting:
– Instance space: 𝒳 (dimensionality 𝑛)
– Target 𝑓: 𝒳 → 0,1 , 𝑓 ∈ 𝐶 the concept class (parameterized by 𝑛)

• Learning Protocol:
– Learner is given 𝐱 ∈ 𝒳, randomly chosen
– Learner predicts ℎ(𝐱) and is then given 𝑓 𝐱 ⟵ the feedback

• Performance: learner makes a mistake when ℎ 𝐱 ≠ 𝑓(𝑥)
– 𝑀! 𝑓, 𝑆 : Number of mistakes algorithm 𝐴 makes on sequence 𝑆 of

examples for the target function 𝑓
– 𝑀! 𝐶 = max

"∈$
𝑀! 𝑓, 𝑆 : The maximum possible number of mistakes made

by 𝐴 for any target function in 𝐶 and any sequence S of examples

• Algorithm 𝐴 is a mistake bound algorithm for the concept class 𝐶 if
𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛

22

Learnability in the mistake bound model

• Algorithm 𝐴 is a mistake bound algorithm for the concept
class 𝐶 if 𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛
– That is, the maximum number of mistakes it makes for any sequence

of inputs (perhaps even an adversarially chosen one) is polynomial in
the dimensionality

23

Learnability in the mistake bound model

• Algorithm 𝐴 is a mistake bound algorithm for the concept
class 𝐶 if 𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛
– That is, the maximum number of mistakes it makes for any sequence

of inputs (perhaps even an adversarially chosen one) is polynomial in
the dimensionality

• A concept class is learnable in the mistake bound model if
there exists an algorithm that makes a polynomial number of
mistakes for any sequence of examples
– Polynomial in the dimensionality of the examples

24

Learnability in the mistake bound model

• Algorithm 𝐴 is a mistake bound algorithm for the concept
class 𝐶 if 𝑀𝐴(𝐶) is a polynomial in the dimensionality 𝑛
– That is, the maximum number of mistakes it makes for any sequence

of inputs (perhaps even an adversarially chosen one) is polynomial in
the dimensionality

• A concept class is learnable in the mistake bound model if
there exists an algorithm that makes a polynomial number of
mistakes for any sequence of examples
– Polynomial in the dimensionality of the examples

25

• Not the most general setting for online learning
• Not the most general metric
• Other metrics: Regret, cumulative loss

Online Learning

• No assumptions about the distribution of examples

• Examples are presented to the learning algorithm in a
sequence. Could be adversarial!

For each example:
1. Learner gets an unlabeled example
2. Learner makes a prediction
3. Then, the true label is revealed

• In the mistake bound model, we only count the number
of mistakes

26

Online Learning

• Simple and intuitive model, widely applicable

• Important in the case of very large data sets, when the
data cannot fit memory (streaming data)

• Evaluation: We will try to make the smallest number of
mistakes in the long run.

– Some things to think about:
• What is the relation to the “real” goal? What is the real goal of

learning?
• Does online learning generate a hypothesis that does well on

previously unseen data?

27

Online/Mistake Bound Learning

• No notion of data distribution; a worst case model

• No (or not much) memory: get example → update hypothesis → get
rid of it

• Drawbacks:
– Too simple
– Global behavior: not clear when will the mistakes be made

• Advantages:
– Simple
– Many issues arise already in this setting
– Generic conversion to other learning models (online-to-batch conversion)

28

Is counting mistakes enough?

• Under the mistake bound model, we are not concerned about
the number of examples needed to learn a function

• We only care about not making mistakes

• Eg: Suppose the learner is presented the same example over
and over
– Under the mistake bound model, it is okay
– We won’t be able to learn the function, but we won’t make any

mistakes either!

29

Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The
Halving algorithm

• Examples

• Representations and ease of learning

30

Can mistake bound algorithms exist?

Before getting to a more useful mistake bound algorithm, let’s
see a proof-of-concept mistake bound algorithm

The Halving algorithm

31

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• Clearly, 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?

32

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• Clearly, 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?

33

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• Clearly, 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?

34

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• It is not hard to show that 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?

35

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• It is not hard to show that 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?

36

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• It is not hard to show that 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes
Is this a mistake bound algorithm? Can we do better ?

37Questions?

Generic Mistake Bound Algorithms
• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

• Algorithm CON (short for consistent):
In the 𝑖𝑡ℎ stage of the algorithm:
– 𝐶% = all concepts in C consistent with all i – 1 previously seen examples
– Choose randomly 𝑓 ∈ 𝐶% and use it to predict the next example

• It is not hard to show that 𝐶()! ⊆ 𝐶(

• If a mistake is made on the 𝑖𝑡ℎ example, then 𝐶()! < 𝐶(
progress is made

• The CON algorithm makes at most 𝐶 − 1mistakes

38

Is this a mistake bound algorithm? Depends on what 𝐶 is
Can we do better than CON?

The Halving Algorithm

• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

39

• Initialize C0 = C, the set of all possible functions
• When an example x arrives:

• Predict the label for x as 1 if a majority of the functions in Ci
predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x):
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci

We will construct a series of sets of functions Ci

The Halving Algorithm

• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

40

• Initialize C0 = C, the set of all possible functions
• When an example x arrives:

• Predict the label for x as 1 if a majority of the functions in Ci
predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x):
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci

The Halving Algorithm

• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

41

• Initialize C0 = C, the set of all possible functions
• When an example x arrives:

• Predict the label for x as 1 if a majority of the functions in Ci
predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x): (i.e error)
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci

The Halving Algorithm

• Let 𝐶 be a finite concept class
• Goal: Learn 𝑓 ∈ 𝐶

42

• Initialize C0 = C, the set of all possible functions
• When an example x arrives:

• Predict the label for x as 1 if a majority of the functions in Ci
predict 1. Otherwise 0. That is, output = 1 if

• If prediction ≠ f(x): (i.e error)
• Update Ci+1 = all elements of Ci that agree with f(x)

• Learning ends when there is only one element in Ci

How many mistakes will the Halving algorithm make?

How many mistakes will the Halving algorithm
make?

Suppose it makes n mistakes. Finally, we will have the final set of
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect

43

How many mistakes will the Halving algorithm
make?

Suppose it makes n mistakes. Finally, we will have the final set of
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect

44

How many mistakes will the Halving algorithm
make?

Suppose it makes n mistakes. Finally, we will have the final set of
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect

45

How many mistakes will the Halving algorithm
make?

Suppose it makes n mistakes. Finally, we will have the final set of
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect

46

The Halving algorithm will make at most log 𝐶 	mistakes

How many mistakes will the Halving algorithm
make?

Suppose it makes n mistakes. Finally, we will have the final set of
concepts Cn with one element
Cn was created when a majority of the functions in Cn-1 were incorrect

47

The Halving algorithm will make at most log 𝐶 	mistakes
Questions?

The Halving Algorithm

• Hard to compute

• In some concept classes, Halving is optimal
– Eg: for class of all Boolean functions

48

The Halving Algorithm

• Hard to compute

• In some concept classes, Halving is optimal
– Eg: for class of all Boolean functions

49

For the most difficult
concept in the class,

for the most difficult
sequence of examples,

the optimal mistake bound
algorithm makes the
fewest number of mistakes

The Halving Algorithm

• Hard to compute

• In some concept classes, Halving is optimal
– Eg: for class of all Boolean functions

• In general, to be optimal, instead of guessing in accordance
with the majority of the valid concepts, we should guess
according to the concept group that gives the least number of
expected mistakes (even harder to compute)

50

For the most difficult
concept in the class,

for the most difficult
sequence of examples,

the optimal mistake bound
algorithm makes the
fewest number of mistakes

Summary: The Halving algorithm

• A simple algorithm for finite concept spaces
– Stores a set of hypotheses that it iteratively refines

• Receive an input
• Prediction: the label of the majority of hypotheses still under consideration
• Update: If incorrect, remove all inconsistent hypotheses

• Makes O(log|C|) mistakes for a concept class C

• Not always optimal because we care about minimizing the
number of mistakes in the future!
– What if, instead of eliminating functions that disagree with this

example, we down-weight them
– Perhaps via multiplicative or additive updates…

51

Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The
Halving algorithm

• Examples

• Representations and ease of learning

52

Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = ? ? ?
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ?

53

2kC(n,k) ≈ 2k nk

Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ?

54

2kC(n,k) ≈ 2k nk

Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ?

55

2kC(n,k) ≈ 2k nk

Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• There is a practical algorithm that can achieve this bound
– Elimination: Learn from positive examples by eliminating inactive

literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ?

56

2kC(n,k) ≈ 2k nk

The Halving algorithm is not efficient.

Elimination is an efficient algorithm that realizes the mistake
bound of the Halving algorithm

Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• There is a practical algorithm that can achieve this bound
– Elimination: Learn from positive examples by eliminating inactive

literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ?

57

2kC(n,k) ≈ 2k nk

Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

58

Notation: <example, label>

Sidenote: Elimination algorithm

Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

59

Look for the variables that are present
in every positive example.

All other variables can be eliminated

Why?

Sidenote: Elimination algorithm

Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

For a reasonable learning algorithm (by
elimination), the final hypothesis will be

Sidenote: Elimination algorithm

Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

61

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by
elimination), the final hypothesis will be

Sidenote: Elimination algorithm

Learning Conjunctions: Elimination

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

62

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by
elimination), the final hypothesis will be

With the given data, we only learned an
approximation to the true concept.

Is it good enough?

Sidenote: Elimination algorithm

Learning Conjunctions

Hidden function: conjunctions
– The learner is to learn functions like 𝑓 = 𝑥$ ∧ 𝑥% ∧ 𝑥& ∧ 𝑥' ∧ 𝑥())

• Number of conjunctions with 𝑛 variables = C = 3'
– log 𝐶 = 𝑂(𝑛)

• The elimination algorithm makes at most n mistakes
– Learn from positive examples; eliminate inactive literals.

Hidden function: k-conjunctions
– Assume that only k<<n attributes occur in the conjunction

• Number of k-conjunctions = 2& '
& ≈ 2&𝑛&

– log 𝐶 = 𝑂(𝑘 log 𝑛)
– Can we learn efficiently with this number of mistakes ?

63

Why?

Mistake bound learning

• The mistake bound model

• A proof of concept mistake bound algorithm: The
Halving algorithm

• Examples

• Representations and ease of learning

64

Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis

space be the class of conjunctions?
– Theorem [Haussler 1988]: Given a sample on n attributes that is consistent with a

conjunctive concept, it is NP-hard to find a pure conjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

– Same holds for Disjunctions

• Proof intuition: Reduction to minimum set cover problem
Given a collection of sets that cover X, define a set of examples so that learning
the best (dis/con)junction implies a minimal cover.
) We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept
as a Linear Threshold function.

65

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier

Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis

space be the class of conjunctions?
• Theorem [Haussler 1988]: Given a sample on 𝑛 attributes that is

consistent with a conjunctive concept, it is NP-hard to find a pure
conjunctive hypothesis that is both consistent with the sample and has the
minimum number of attributes.
– Same holds for Disjunctions

• Proof intuition: Reduction to minimum set cover problem
Given a collection of sets that cover X, define a set of examples so that learning
the best (dis/con)junction implies a minimal cover.

) We cannot learn the concept efficiently as a (dis/con)junction
• But, we will see that we can do that, if we are willing to learn the concept

as a Linear Threshold function.

66

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier

Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis

space be the class of conjunctions?
• Theorem [Haussler 1988]: Given a sample on 𝑛 attributes that is

consistent with a conjunctive concept, it is NP-hard to find a pure
conjunctive hypothesis that is both consistent with the sample and has the
minimum number of attributes.
– Same holds for Disjunctions

• Proof by reduction to minimum set cover problem
⇒ We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept
as a Linear Threshold function.

67

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier

Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis

space be the class of conjunctions?
• Theorem [Haussler 1988]: Given a sample on 𝑛 attributes that is

consistent with a conjunctive concept, it is NP-hard to find a pure
conjunctive hypothesis that is both consistent with the sample and has the
minimum number of attributes.
– Same holds for Disjunctions

• Proof by reduction to minimum set cover problem
⇒ We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept
as a Linear Threshold function.

68

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier

Representation and efficient learning
• Assume that you want to learn conjunctions. Should your hypothesis

space be the class of conjunctions?
• Theorem [Haussler 1988]: Given a sample on 𝑛 attributes that is

consistent with a conjunctive concept, it is NP-hard to find a pure
conjunctive hypothesis that is both consistent with the sample and has the
minimum number of attributes.
– Same holds for Disjunctions

• Proof by reduction to minimum set cover problem
⇒ We cannot learn the concept efficiently as a (dis/con)junction

• But, we will see that we can do that, if we are willing to learn the concept
as a Linear Threshold function.

69

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier

What you should know

• What is the mistake bound model?

• Simple proof-of-concept mistake bound algorithms
– CON: Makes O(|C|) mistakes
– The Halving algorithm

• Can learn a concept with at most log(|C|) mistakes
• Sadly, for non-trivial functions, only useful if we don’t care about storage or

computation time
• How to apply this bound to simple function classes

• Even for simple Boolean functions (conjunctions and
disjunctions), learning them as linear threshold units is
computationally easier

70

