
Machine	Learning

Multiclass	Classification

So	far:	Binary	Classification

• We	have	seen	linear	models

• Learning	algorithms	for	linear	models
– Perceptron,	Winnow,	Adaboost,	SVM
– We	will	see	more	soon:	Naïve	Bayes,	Logistic	Regression

• In	all	cases,	the	prediction	is	simple
– Given	an	example	x,	prediction	=	sgn(wTx)
– Output	is	a	single	bit

2

What	about	decision	trees	and	
nearest	neighbors?	Is	the	output	a	
single	bit	here	too?

Multiclass	classification

• Introduction:	What	is	multiclass	classification?

• Combining	binary	classifiers
– One-vs-all
– All-vs-all
– Error	correcting	codes

At	the	end	of	the	semester:	Training	a	single	classifier
– Multiclass	SVM
– Constraint	classification

3

Where	are	we?

• Introduction:	What	is	multiclass	classification?

• Combining	binary	classifiers
– One-vs-all

– All-vs-all

– Error	correcting	codes

4

What	is	multiclass	classification?

• An	instance	can	belong	to	one	of	K	classes

• Training	data:	Instance	with	class	label	(a	number	from	1	to	K)
• Prediction:	Given	a	new	input,	predict	the	class	label

Each	input	belongs	to	exactly	one	class.	Not	more,	not	less.	

• Otherwise,	the	problem	is	not	multiclass	classification

• If	an	input	can	be	assigned	multiple	labels	(think	tags	for	emails	
rather	than	folders),	it	is	called	multi-label	classification

5

Example	applications:	Images

– Input:	hand-written	character;	Output:	which	character?

– Input:	a	photograph	of	an	object;	Output:	which	of	a	set	of	
categories	of	objects	is	it?	
• Eg:	the	Caltech	256	dataset

6

all	map	to	the	letter	A

Car	tire Car	tire Duck laptop

Example	applications:	Language

• Input:	a	news	article
Output:	which	section	of	the	newspaper	should	it	belong	to?

• Input:	an	email	
Output:	which	folder	should	an	email	be	placed	into?

• Input:	an	audio	command	given	to	a	car;	
Output:	which	of	a	set	of	actions	should	be	executed?

7

Where	are	we?

• Introduction:	What	is	multiclass	classification?

• Combining	binary	classifiers
– One-vs-all

– All-vs-all

– Error	correcting	codes

8

Binary	to	multiclass

Can	we	use	a	binary	classifier	to	construct	a	multiclass	
classifier?
– Decompose	the	prediction	into	multiple	binary	decisions

• How	to	decompose?
– One-vs-all
– All-vs-all
– Error	correcting	codes

9

General	setting

• Instances:	x 2 <n

– The	inputs	are	represented	by	their	feature	vectors
• Output	y	2 {1,	2,	!,	K}

– These	classes	represent	domain-specific	labels

• Learning:	Given	a	dataset	D	=	{<xi,	yi>}
– Need	to	specify	a	learning	algorithm	that	takes	uses	D	to	construct	a	

function	that	can	predict	y given	x
– Goal:	find	a	predictor	that	does	well	on	the	training	data	and	has	low	

generalization	error

• Prediction:	Given	an	example	x and	the	learned	hypothesis	
– Compute	the	class	label	for	x

10

1.	One-vs-all	classification

Assumption:	Each	class	individually	separable	from	all the	others

• Learning:	Given	a	dataset	D	=	{<xi,	yi>},	
Note:	xi 2 <n,	yi 2 {1,	2,	!,	K}

– Decompose	into	K	binary	classification	tasks
– For	class	k,	construct	a	binary	classification	task	as:

• Positive	examples:	Elements	of	D	with	label	k
• Negative	examples:	All	other	elements	of	D

– Train	K	binary	classifiers	w1,	w2,	! wK using	any	learning	algorithm	we	
have	seen

• Prediction:	“Winner	Takes	All”
argmaxi wi

Tx

11

Question:	What	is	the	
dimensionality	of	
each	wi?

Visualizing	One-vs-all

12

From	the	full	dataset,	construct	three	
binary	classifiers,	one	for	each	class

wblue
Tx >	0	

for	blue
inputs

wred
Tx >	0	

for	red	
inputs

wgreen
Tx >	0	

for	green	
inputs

For	this	case,	Winner	Take	All	will	predict	the	right	
answer.	Only	the	correct	label	will	have	a	positive	score

Notation:	Score	
for	blue	label

One-vs-all	may	not	always	work

13

Black	boxes	are	not	separable	with	a	single	binary	
classifier

The	decomposition	will	not	work	for	these	cases!

wred
Tx >	0	

for	red	
inputs

wgreen
Tx >	0	

for	green	
inputs

???
wblue

Tx >	0	
for	blue
inputs

One-vs-all	classification:	Summary

• Easy	to	learn
– Use	any	binary	classifier	learning	algorithm

• Problems
– No	theoretical	justification
– Calibration	issues

• We	are	comparing	scores	produced	by	K	classifiers	trained	
independently.	No	reason	for	the	scores	to	be	in	the	same	
numerical	range!

– Might	not	always	work
• Yet,	works	fairly	well	in	many	cases,	especially	if	the	underlying	
binary	classifiers	are	well	tuned

14

Side	note	about	Winner	Take	All	prediction

• If	the	final	prediction	is	winner	take	all,	is	a	bias	
feature	useful?
– Recall	bias	feature	is	a	constant	feature	for	all	examples
– Winner	take	all:

argmaxi wi
Tx

• Answer:	No
– The	bias	adds	a	constant	to	all	the	scores
– Will	not	change	the	prediction

15

2.	All-vs-all	classification

Assumption:	Every pair	of	classes	is	separable
• Learning:	Given	a	dataset	D	=	{<xi,	yi>},	

Note:	xi 2 <n,	yi 2 {1,	2,	!,	K}
– For	every	pair	of	labels	(j,	k),	create	a	binary	classifier	with:

• Positive	examples:	All	examples	with	label	j
• Negative	examples:	All	examples	with	label	k

– Train																										classifiers	in	all

• Prediction:	More	complex,	each	label	get	K-1	votes
– How	to	combine	the	votes?	Many	methods

• Majority:	Pick	the	label	with	maximum	votes
• Organize	a	tournament	between	the	labels

16

Sometimes	called	one-vs-one

K
2
!

"
#

$

%
&=

K(K −1)
2

All-vs-all	classification

• Every	pair	of	labels	is	linearly	separable	here
– When	a	pair	of	labels	is	considered,	all	others	are	ignored

• Problems	with	this	approach?
1. O(K2)	weight	vectors	to	train	and	store
2. Size	of	training	set	for	a	pair	of	labels	could	be	very	small,	

leading	to	overfitting
3. Prediction	is	often	ad-hoc	and	might	be	unstable

Eg:	What	if	two	classes	get	the	same	number	of	votes?	For	a	tournament,	
what	is	the	sequence	in	which	the	labels	compete?

17

3.	Error	correcting	output	codes	(ECOC)

• Each	binary	classifier	provides	one	bit	of	information

• With	K	labels,	we	only	need	log2K	bits
– One-vs-all	uses	K bits	(one	per	classifier)
– All-vs-all	uses	O(K2)	bits

• Can	we	get	by	with	O(log	K)	classifiers?
– Yes! Encode	each	label	as	a	binary	string
– Or	alternatively,	if	we	do	train	more	than	O(log	K)	classifiers,	can	

we	use	the	redundancy	to	improve	classification	accuracy?

18

Using	log2K	classifiers

• Learning:
– Represent	each	label	by	a	bit	string
– Train	one	binary	classifier	for	each	bit

• Prediction:
– Use	the	predictions	from	all	the	classifiers	to	create	a	log2N	bit	

string	that	uniquely	decides	the	output

• What	could	go	wrong	here?
– Even	if	one	of	the	classifiers	makes	a	mistake,	final	prediction	is	

wrong!
– How	do	we	fix	this	problem?

19

Code

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 classes,	code-length	=	3

Error	correcting	output	code

Answer:	Use	redundancy	

• Assign	a	binary	string	with	each	label	
– Could	be	random
– Length	of	the	code	word	L	>=	log2K	is	a	parameter

• Train	one	binary	classifier	for	each	bit
– Effectively,	split	the	data	into	random	dichotomies
– We	need	only	log2K	bits

• Additional	bits	act	as	an	error	correcting	code

• One-vs-all	is	a	special	case.	
– How?

20

8 classes,	code-length	=	5

Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

How	to	predict?

• Prediction
– Run	all	L	binary	classifiers	on	the	example
– Gives	us	a	predicted	bit	string	of	length	L
– Output	=	label	whose	code	word	is	“closest”	to

the	prediction
– Closest	defined	using	Hamming	distance

• Longer	code	length	is	better,	better	error-correction

• Example
– Suppose	the	binary	classifiers	here	predict	11010
– The	closest	label	to	this	is	6,	with	code	word	11000

21

8 classes,	code-length	=	5

Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

Error	correcting	codes:	Discussion

• Assumes	that	columns	are	independent
– Otherwise,	ineffective	encoding

• Strong	theoretical	results	that	depend	on	code	length
– If	minimal	Hamming	distance	between	two	rows	is	d,	then	the	

prediction	can	correct	up	to	(d-1)/2	errors	in	the	binary	predictions

• Code	assignment	could	be	random,	or	designed	for	the	
dataset/task

• One-vs-all	and	all-vs-all	are	special	cases
– All-vs-all	needs	a	ternary	code	(not	binary)

22

Summary:	Decomposition	for	multiclass	
classification	methods
• General	idea

– Decompose	the	multiclass	problem	into	many	binary	problems
– We	know	how	to	train	binary	classifiers
– Prediction	depends	on	the	decomposition

• Constructs	the	multiclass	label	from	the	output	of	the	binary	classifiers

• Learning	optimizes	local	correctness
– Each	binary	classifier	does	not	need	to	be	globally	correct

• That	is,	the	classifiers	do	not	need	to	agree	with	each	other
– The	learning	algorithm	is	not	even	aware	of	the	prediction	procedure!

• Poor	decomposition	gives	poor	performance
– Difficult	local	problems,	can	be	“unnatural”

• Eg.	For	ECOC,	why	should	the	binary	problems	be	separable?

23
Questions?

Coming	up	later

• Decomposition	methods	
– Do	not	account	for	how	the	final	predictor	will	be	used
– Do	not	optimize	any	global	measure	of	correctness

• Goal:	To	train	a	multiclass	classifier	that	is	“global”

24

