Multiclass Classification

Machine Learning

So far: Binary Classification

- We have seen linear models
- Learning algorithms for linear models
	- $-$ Perceptron, Winnow, Adaboost, SVM
	- We will see more soon: Naïve Bayes, Logistic Regression
- In all cases, the prediction is simple
	- $-$ Given an example **x**, prediction = sgn($w^T x$)
	- Output is a single bit

What about decision trees and nearest neighbors? Is the output a single bit here too?

Multiclass classification

- Introduction: What is multiclass classification?
- Combining binary classifiers
	- One-vs-all
	- All-vs-all
	- Error correcting codes

At the end of the semester: Training a single classifier

- Multiclass SVM
- Constraint classification

Where are we?

• Introduction: What is multiclass classification?

- Combining binary classifiers
	- One-vs-all
	- All-vs-all
	- Error correcting codes

What is multiclass classification?

- An instance can belong to one of K classes
- Training data: Instance with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called *multi-label classification*

Example applications: Images

 $-$ *Input*: hand-written character; *Output*: which character? A A**U**AAAAA AA all map to the letter A

 $-$ *Input*: a photograph of an object; *Output*: which of a set of categories of objects is it?

• Eg: the Caltech 256 dataset

Example applications: Language

• *Input*: a news article

Output: which section of the newspaper should it belong to?

- *Input*: an email *Output*: which folder should an email be placed into?
- *Input*: an audio command given to a car; **Output:** which of a set of actions should be executed?

Where are we?

• Introduction: What is multiclass classification?

- Combining binary classifiers
	- One-vs-all
	- All-vs-all
	- Error correcting codes

Binary to multiclass

Can we use a binary classifier to construct a multiclass classifier?

- $-$ Decompose the prediction into multiple binary decisions
- How to decompose?
	- One-vs-all
	- All-vs-all
	- Error correcting codes

General setting

- Instances: $\mathbf{x} \in \Re^n$
	- $-$ The inputs are represented by their feature vectors
- Output $y \in \{1, 2, \dots, K\}$
	- $-$ These classes represent domain-specific labels
- Learning: Given a dataset D = {< x_i , y_i >}
	- $-$ Need to specify a learning algorithm that takes uses D to construct a function that can predict **y** given **x**
	- $-$ Goal: find a predictor that does well on the training data and has low generalization error
- Prediction: Given an example **x** and the learned hypothesis
	- $-$ Compute the class label for **x**

1. One-vs-all classification

Assumption: Each class individually separable from **all** the others

• Learning: Given a dataset $D = \{\langle x_i, y_i \rangle\},\$

Note: $\mathbf{x}_i \in \Re^n$, $\mathbf{y}_i \in \{1, 2, \dots, K\}$

- $-$ Decompose into K binary classification tasks
- $-$ For class k, construct a binary classification task as:
	- Positive examples: Elements of D with label k
	- Negative examples: All other elements of D
- $-$ Train K binary classifiers w_1 , w_2 , $\cdots w_k$ using any learning algorithm we have seen
- Prediction: "*Winner Takes All*" argmax_i $\textbf{w}_\text{i}^\intercal \textbf{x}$

Question: What is the dimensionality of each **w**_i?

Visualizing One-vs-all

for blue label

For this case, Winner Take All will predict the right answer. Only the correct label will have a positive score

One-vs-all may not always work

Black boxes are not separable with a single binary classifier

The decomposition will not work for these cases!

???

 $\mathbf{w}_{\text{blue}}^T \mathbf{x} > 0$ for **blue inputs**

 $\mathbf{w}_{\text{red}}^T \mathbf{x} > 0$ for **red inputs**

 $\mathbf{w}_{\text{green}}^T \mathbf{x} > 0$ for **green inputs**

One-vs-all classification: Summary

- Easy to learn
	- $-$ Use any binary classifier learning algorithm
- Problems
	- $-$ No theoretical justification
	- Calibration issues
		- We are comparing scores produced by K classifiers trained independently. No reason for the scores to be in the same numerical range!
	- $-$ Might not always work
		- Yet, works fairly well in many cases, especially if the underlying binary classifiers are well tuned

Side note about Winner Take All prediction

- If the final prediction is winner take all, is a bias feature useful?
	- $-$ Recall bias feature is a constant feature for all examples
	- Winner take all:

argmax_i $\textbf{w}_\text{i}^\intercal \textbf{x}$

- Answer: No
	- $-$ The bias adds a constant to all the scores
	- $-$ Will not change the prediction

2. All-vs-all classification

Sometimes called one-vs-one

Assumption: *Every* pair of classes is separable

- Learning: Given a dataset $D = \{ \langle x_i, y_i \rangle \}$, Note: $\mathbf{x}_i \in \Re^n$, $\mathbf{y}_i \in \{1, 2, \dots, K\}$
	- $-$ For every pair of labels (j, k), create a binary classifier with:
		- Positive examples: All examples with label j
		- Negative examples: All examples with label k

- Train
$$
\binom{K}{2}
$$
 = $\frac{K(K-1)}{2}$ classifiers in all

• Prediction: More complex, each label get K-1 votes

- $-$ How to combine the votes? Many methods
	- Majority: Pick the label with maximum votes
	- Organize a tournament between the labels

All-vs-all classification

- Every pair of labels is linearly separable here
	- $-$ When a pair of labels is considered, all others are ignored

• Problems with this approach?

- 1. $O(K^2)$ weight vectors to train and store
- 2. Size of training set for a pair of labels could be very small, leading to overfitting
- 3. Prediction is often ad-hoc and might be unstable Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

3. Error correcting output codes (ECOC)

- Each binary classifier provides one bit of information
- With K labels, we only need log_2K bits
	- $-$ One-vs-all uses K bits (one per classifier)
	- $-$ All-vs-all uses $O(K^2)$ bits
- Can we get by with O(log K) classifiers?
	- $-$ Yes! Encode each label as a binary string
	- $-$ Or alternatively, if we do train more than O(log K) classifiers, can we use the redundancy to improve classification accuracy?

8 classes, $code-length = 3$

Using log_2K classifiers

• Learning:

- $-$ Represent each label by a bit string
- $-$ Train one binary classifier for each bit
- Prediction: $-$ Use the predictions from all the classifiers to create a $log₂N$ bit string that uniquely decides the output
- What could go wrong here?
	- $-$ Even if one of the classifiers makes a mistake, final prediction is wrong!
	- $-$ How do we fix this problem?

Error correcting output code

Answer: Use redundancy

- Assign a binary string with each label
	- Could be random
	- $-$ Length of the code word L \geq log₂K is a parameter
- Train one binary classifier for each bit
	- $-$ Effectively, split the data into random dichotomies
	- $-$ We need only log₂K bits
		- Additional bits act as an error correcting code
- One-vs-all is a special case.
	- How?

8 classes, $code-length = 5$

How to predict?

- Prediction
	- $-$ Run all L binary classifiers on the example
	- $-$ Gives us a predicted bit string of length L
	- $-$ Output = label whose code word is "closest" to the prediction
	- Closest defined using Hamming distance
		- Longer code length is better, better error-correction
- **Example**
	- $-$ Suppose the binary classifiers here predict 11010
	- $-$ The closest label to this is 6, with code word 11000

8 classes, $code-length = 5$

Error correcting codes: Discussion

- Assumes that columns are independent
	- Otherwise, ineffective encoding
- Strong theoretical results that depend on code length
	- $-$ If minimal Hamming distance between two rows is d, then the prediction can correct up to $(d-1)/2$ errors in the binary predictions
- Code assignment could be random, or designed for the dataset/task
- One-vs-all and all-vs-all are special cases
	- All-vs-all needs a ternary code (not binary)

Summary: Decomposition for multiclass classification methods

• General idea

- $-$ Decompose the multiclass problem into many binary problems
- $-$ We know how to train binary classifiers
- $-$ Prediction depends on the decomposition
	- Constructs the multiclass label from the output of the binary classifiers
- Learning optimizes *local correctness*
	- $-$ Each binary classifier does not need to be globally correct
		- That is, the classifiers do not need to agree with each other
	- $-$ The learning algorithm is not even aware of the prediction procedure!
- Poor decomposition gives poor performance
	- Difficult local problems, can be "unnatural"
		- Eg. For ECOC, why should the binary problems be separable?

Questions?

Coming up later

- Decomposition methods
	- $-$ Do not account for how the final predictor will be used
	- Do not optimize any global measure of correctness
- Goal: To train a multiclass classifier that is "global"