Multiclass Classification

Machine Learning

So far: Binary Classification

- We have seen linear models
- Learning algorithms for linear models
 - Perceptron, Winnow, Adaboost, SVM
 - We will see more soon: Naïve Bayes, Logistic Regression
- In all cases, the prediction is simple
 - Given an example \mathbf{x} , prediction = $sgn(\mathbf{w}^T\mathbf{x})$
 - Output is a single bit

What about decision trees and nearest neighbors? Is the output a single bit here too?

Multiclass classification

Introduction: What is multiclass classification?

- Combining binary classifiers
 - One-vs-all
 - All-vs-all
 - Error correcting codes

At the end of the semester: Training a single classifier

- Multiclass SVM
- Constraint classification

Where are we?

Introduction: What is multiclass classification?

- Combining binary classifiers
 - One-vs-all
 - All-vs-all
 - Error correcting codes

What is multiclass classification?

- An instance can belong to one of K classes
- Training data: Instance with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called *multi-label classification*

Example applications: Images

— Input: hand-written character; Output: which character?

AAMAAA DA

all map to the letter A

- Input: a photograph of an object; Output: which of a set of categories of objects is it?
 - Eg: the Caltech 256 dataset

Car tire

Car tire

Duck

laptop

Example applications: Language

Input: a news article
 Output: which section of the newspaper should it belong to?

Input: an email
 Output: which folder should an email be placed into?

Input: an audio command given to a car;
 Output: which of a set of actions should be executed?

Where are we?

Introduction: What is multiclass classification?

- Combining binary classifiers
 - One-vs-all
 - All-vs-all
 - Error correcting codes

Binary to multiclass

Can we use a binary classifier to construct a multiclass classifier?

Decompose the prediction into multiple binary decisions

- How to decompose?
 - One-vs-all
 - All-vs-all
 - Error correcting codes

General setting

- Instances: $\mathbf{x} \in \Re^{\mathsf{n}}$
 - The inputs are represented by their feature vectors
- Output $y \in \{1, 2, \dots, K\}$
 - These classes represent domain-specific labels
- Learning: Given a dataset D = {<x_i, y_i>}
 - Need to specify a learning algorithm that takes uses D to construct a function that can predict y given x
 - Goal: find a predictor that does well on the training data and has low generalization error
- Prediction: Given an example x and the learned hypothesis
 - Compute the class label for x

1. One-vs-all classification

Assumption: Each class individually separable from *all* the others

- Learning: Given a dataset D = $\{\langle \mathbf{x}_i, \mathbf{y}_i \rangle\}$, Note: $\mathbf{x}_i \in \Re^n$, $\mathbf{y}_i \in \{1, 2, \dots, K\}$
 - Decompose into K binary classification tasks
 - For class k, construct a binary classification task as:
 - Positive examples: Elements of D with label k
 - Negative examples: All other elements of D
 - Train K binary classifiers $\mathbf{w}_1, \mathbf{w}_2, \cdots \mathbf{w}_K$ using any learning algorithm we have seen
- Prediction: "Winner Takes All" argmax_i w_i^Tx

Question: What is the dimensionality of each **w**_i?

Visualizing One-vs-all

One-vs-all may not always work

Black boxes are not separable with a single binary classifier

The decomposition will not work for these cases!

$$\mathbf{w_{red}}^{\mathsf{T}}\mathbf{x} > 0$$
 for **red** inputs

One-vs-all classification: Summary

- Easy to learn
 - Use any binary classifier learning algorithm
- Problems
 - No theoretical justification
 - Calibration issues
 - We are comparing scores produced by K classifiers trained independently. No reason for the scores to be in the same numerical range!
 - Might not always work
 - Yet, works fairly well in many cases, especially if the underlying binary classifiers are well tuned

Side note about Winner Take All prediction

- If the final prediction is winner take all, is a bias feature useful?
 - Recall bias feature is a constant feature for all examples
 - Winner take all:

$$argmax_i \mathbf{w}_i^T \mathbf{x}$$

- Answer: No
 - The bias adds a constant to all the scores
 - Will not change the prediction

2. All-vs-all classification

Sometimes called one-vs-one

Assumption: Every pair of classes is separable

Learning: Given a dataset D = {<x_i, y_i>},

Note: $\mathbf{x}_{i} \in \Re^{n}$, $\mathbf{y}_{i} \in \{1, 2, \dots, K\}$

- For every pair of labels (j, k), create a binary classifier with:
 - Positive examples: All examples with label j
 - Negative examples: All examples with label k

- Train
$$\binom{K}{2} = \frac{K(K-1)}{2}$$
 classifiers in all

- Prediction: More complex, each label get K-1 votes
 - How to combine the votes? Many methods
 - Majority: Pick the label with maximum votes
 - Organize a tournament between the labels

All-vs-all classification

- Every pair of labels is linearly separable here
 - When a pair of labels is considered, all others are ignored
- Problems with this approach?
 - 1. $O(K^2)$ weight vectors to train and store
 - Size of training set for a pair of labels could be very small, leading to overfitting
 - 3. Prediction is often ad-hoc and might be unstable
 Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

3. Error correcting output codes (ECOC)

- Each binary classifier provides one bit of information
- With K labels, we only need log₂K bits
 - One-vs-all uses K bits (one per classifier)
 - All-vs-all uses O(K²) bits
- Can we get by with O(log K) classifiers?
 - Yes! Encode each label as a binary string
 - Or alternatively, if we do train more than O(log K) classifiers, can we use the redundancy to improve classification accuracy?

Using log₂K classifiers

Learning:

- Represent each label by a bit string
- Train one binary classifier for each bit

#	Code			
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

8 classes, code-length = 3

Prediction:

- Use the predictions from all the classifiers to create a log₂N bit string that uniquely decides the output
- What could go wrong here?
 - Even if one of the classifiers makes a mistake, final prediction is wrong!
 - How do we fix this problem?

Error correcting output code

Answer: Use redundancy

- Assign a binary string with each label
 - Could be random
 - Length of the code word $L \ge \log_2 K$ is a parameter

#	Code				
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	1
3	0	1	1	0	1
4	1	0	0	1	1
5	1	0	1	0	0
6	1	1	0	0	0
7	1	1	1	1	1

8 classes, code-length = 5

- Train one binary classifier for each bit
 - Effectively, split the data into random dichotomies
 - We need only log₂K bits
 - Additional bits act as an error correcting code
- One-vs-all is a special case.
 - How?

How to predict?

Prediction

- Run all L binary classifiers on the example
- Gives us a predicted bit string of length L
- Output = label whose code word is "closest" to the prediction
- Closest defined using Hamming distance
 - Longer code length is better, better error-correction

Example

- Suppose the binary classifiers here predict 11010
- The closest label to this is 6, with code word 11000

#	Code					
0	0	0	0	0	0	
1	0	0	1	1	0	
2	0	1	0	1	1	
3	0	1	1	0	1	
4	1	0	0	1	1	
5	1	0	1	0	0	
6	1	1	0	0	0	
7	1	1	1	1	1	

8 classes, code-length = 5

Error correcting codes: Discussion

- Assumes that columns are independent
 - Otherwise, ineffective encoding
- Strong theoretical results that depend on code length
 - If minimal Hamming distance between two rows is d, then the prediction can correct up to (d-1)/2 errors in the binary predictions
- Code assignment could be random, or designed for the dataset/task
- One-vs-all and all-vs-all are special cases
 - All-vs-all needs a ternary code (not binary)

Summary: Decomposition for multiclass classification methods

General idea

- Decompose the multiclass problem into many binary problems
- We know how to train binary classifiers
- Prediction depends on the decomposition
 - Constructs the multiclass label from the output of the binary classifiers

Learning optimizes local correctness

- Each binary classifier does not need to be globally correct
 - That is, the classifiers do not need to agree with each other
- The learning algorithm is not even aware of the prediction procedure!

Poor decomposition gives poor performance

- Difficult local problems, can be "unnatural"
 - Eg. For ECOC, why should the binary problems be separable?

Coming up later

- Decomposition methods
 - Do not account for how the final predictor will be used
 - Do not optimize any global measure of correctness
- Goal: To train a multiclass classifier that is "global"