Machine Learning

Today's lecture

- The naïve Bayes Classifier
- Learning the naïve Bayes Classifier
- Practical concerns

Today's lecture

- The naïve Bayes Classifier
- Learning the naïve Bayes Classifier
- Practical concerns

Where are we?

We have seen Bayesian learning

- Using a probabilistic criterion to select a hypothesis
- Maximum a posteriori and maximum likelihood learning
 You should know what is the difference between them

Where are we?

We have seen Bayesian learning

- Using a probabilistic criterion to select a hypothesis
- Maximum a posteriori and maximum likelihood learning
 You should know what is the difference between them

We could also learn functions that *predict* probabilities of outcomes

Different from using a probabilistic criterion to learn

Maximum a posteriori (MAP) prediction as opposed to MAP learning

Using the Bayes rule for predicting y given an input x

$$P(Y = y \mid X = \mathbf{x}) = \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$
Posterior probability of label being

y for this input x

Using the Bayes rule for predicting y given an input x

$$P(Y = y \mid X = \mathbf{x}) = \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$

Predict the label y for the input x using

$$\underset{y}{\operatorname{argmax}} \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$

Using the Bayes rule for predicting y given an input x

$$P(Y = y \mid X = \mathbf{x}) = \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$

Predict the label y for the input x using

$$\operatorname{argmax}_{y} P(X = \mathbf{x} \mid Y = y)P(Y = y)$$

Don't confuse with MAP learning: finds hypothesis by $h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(D|h)P(h)$

Using the Bayes rule for predicting y given an input x

$$P(Y = y \mid X = \mathbf{x}) = \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$

Predict the label y for the input x using

$$\operatorname{argmax}_{y} P(X = \mathbf{x} \mid Y = y)P(Y = y)$$

Predict the label y for the input \mathbf{x} using

All we need are these two sets of probabilities

	Play tennis	P(Play tennis)
Prior	Yes	0.3
	No	0.7

Without any other information, what is the prior probability that I should play tennis?

	Prior	Play t Yes No	ennis	P(Play tennis) 0.3 0.7	Wit wh shc
	Temper	ature	Wind	P(T, W Ten	nis = Yes)
	Но	t	Stron	g 0.1	5
	Но	t	Weak	x 0.4	ļ
	Col	d	Stron	g 0.1	L
Likolihoo	Col	d	Weak	x 0.3	5
LIKEIIIIOO	Temper	ature	Winc	l P(T, W Ter	nnis = <mark>No</mark>)
	Но	t	Stron	g 0.4	1
	Но	t	Weal	< 0.1	1
	Col	d	Stron	g 0.3	3
	Col	d	Weal	< 0.2	2

Nithout any other information, what is the prior probability that I should play tennis?

> On days that I do play tennis, what is the probability that the temperature is T and the wind is W?

On days that I don't play tennis, what is the probability that the temperature is T and the wind is W?

		Play t	ennis F	P(Play tennis)	
	Prior	Yes	().3	
		No	().7	
	Tempe	rature	Wind	P(T, W Tenr	nis = Yes)
	H	ot	Strong	0.15	
	H	ot	Weak	0.4	
	Co	ld	Strong	0.1	
ikalihaa	Co	ld	Weak	0.35	
IKEIIIIOO	Tempe	rature	Wind	P(T, W Tenr	nis = <mark>No</mark>)
	Н	ot	Strong	0.4	
	H	ot	Weak	0.1	
	Co	old	Strong	0.3	
	Сс	old	Weak	0.2	

Input:

Temperature = Hot (H) Wind = Weak (W)

Should I play tennis?

	Play	tennis P	(Play tennis)	
	Prior Yes	0	.3	
	No	0	.7	
	Temperature	Wind	P(T, W Tenr	nis = <mark>Yes</mark>)
	Hot	Strong	0.15	1
	Hot	Weak	0.4	
	Cold	Strong	0.1	
•1 •1•1	Cold	Weak	0.35	1
.ikelihood	Temperature	Wind		his = No
	lemperature	vviiru		113 – 110)
	Hot	Strong	0.4	
	Hot	Weak	0.1	
	Cold	Strong	0.3	
	Cold	Weak	0.2	

Input: Temperature = Hot (H) Wind = Weak (W)

Should I play tennis?

argmax_y P(H, W | play?) P (play?)

	Play	/ tennis P	(Play tennis)	
	Prior Yes	0	.3	
	No	0	.7	
	Temperature	e Wind	P(T, W Tenn	is = Yes)
	Hot	Strong	0.15	
	Hot	Weak	0.4	
	Cold	Strong	0.1	
ikalihaa	Cold	Weak	0.35	
IKeIIII00	Temperature	e Wind	P(T, W Tenn	is = <mark>No</mark>)
	Hot	Strong	0.4	
	Hot	Weak	0.1	
	Cold	Strong	0.3	
	Cold	Weak	0.2	

Input: Temperature = Hot (H) Wind = Weak (W)

Should I play tennis?

argmax, P(H, W | play?) P (play?)

P(H, W | Yes) P(Yes) = 0.4 × 0.3 = 0.12

```
P(H, W | No) P(No) = 0.1 × 0.7
= 0.07
```

		Play t	ennis	P(Play tennis)	
	Prior	Yes		0.3	
		No		0.7	
	Temper	ature	Wind	P(T, W Tenn	is = Yes)
	Ho	t	Strong	g 0.15	
	Ho	t	Weak	0.4	
	Col	d	Strong	g 0.1	
Likolihoo	Col	d	Weak	0.35	
LIKEIIIIOO	Temper	ature	Wind	P(T, W Tenr	nis = <mark>No</mark>)
	Но	t	Stron	g 0.4	
	Но	t	Weak	x 0.1	
	Col	d	Stron	g 0.3	
	Col	d	Weak	x 0.2	

Input: Temperature = Hot (H) Wind = Weak (W)

Should I play tennis?

argmax_v P(H, W | play?) P (play?)

P(H, W | Yes) P(Yes) = 0.4 × 0.3 = 0.12

P(H, W | No) P(No) = 0.1 × 0.7 = 0.07

MAP prediction = Yes

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

O utlook:	S(unny), O(vercast), R(ainy)
Temperatur	e: H(ot), M(edium), C(ool)
Humidity:	H(igh) <i>,</i> N(ormal), L(ow)
Wind:	S(trong) <i>,</i> W(eak)

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

O utlook:	S(unny), O(vercast),	
	R(ainy)	
T ∉ ^{We need}	to learn	
1.The prior <i>P</i> (Play?)		
2.The likelihoods <i>P</i> (x Play?)		
· ·	N(ormal).	
	L(ow)	
Wind:	S(trong), W(eak)	

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

Prior P(play?)

• A single number (Why only one?)

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

Prior P(play?)

- A single number (Why only one?)
 Likelihood P(X | Play?)
- There are 4 features
- For each value of Play? (+/-), we need a value for each possible assignment: P(O, T, H, W | Play?)

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-
	3	3	3	2	

Prior P(play?)

- A single number (Why only one?)
 Likelihood P(X | Play?)
- There are 4 features
- For each value of Play? (+/-), we need a value for each possible assignment: P(O, T, H, W | Play?)

Values for this feature

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-
	3	3	3	2	

Values for this feature

Prior P(play?)

- A single number (Why only one?)
 Likelihood P(X | Play?)
- There are 4 features
- For each value of Play? (+/-), we need a value for each possible assignment: P(O, T, H, W | Play?)
- $(3 \cdot 3 \cdot 3 \cdot 2 1)$ parameters in each case

One for each assignment

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	н	S	-

Prior P(Y)

 If there are k labels, then k – 1 parameters (why not k?)

In general

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

Prior P(Y)

 If there are k labels, then k – 1 parameters (why not k?)

In general

Likelihood P(X | Y)

- If there are d Boolean features:
 - We need a value for each possible P(x₁, x₂, …, x_d | y) for each y
 - k(2^d 1) parameters

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	М	н	S	_

Prior P(Y)

 If there are k labels, then k – 1 parameters (why not k?)

In general

Likelihood P(X | Y)

- If there are d Boolean features:
 - We need a value for each possible P(x₁, x₂, …, x_d | y) for each y
 - k(2^d 1) parameters

Need a lot of data to estimate these many numbers!

Prior P(Y)

 If there are k labels, then k – 1 parameters (why not k?)

Likelihood P(X | Y)

- If there are d Boolean features:
 - We need a value for each possible P(x₁, x₂, …, x_d | y) for each y
 - k(2^d 1) parameters

Need a lot of data to estimate these many numbers!

High model complexity

If there is very limited data, high variance in the parameters

Prior P(Y)

 If there are k labels, then k – 1 parameters (why not k?)

Likelihood P(X | Y)

- If there are d Boolean features:
 - We need a value for each possible P(x₁, x₂, …, x_d | y) for each y
 - k(2^d 1) parameters

Need a lot of data to estimate these many numbers!

High model complexity

If there is very limited data, high variance in the parameters

How can we deal with this?

Prior P(Y)

 If there are k labels, then k – 1 parameters (why not k?)

Likelihood P(X | Y)

- If there are d Boolean features:
 - We need a value for each possible P(x₁, x₂, …, x_d | y) for each y
 - k(2^d 1) parameters

Need a lot of data to estimate these many numbers!

High model complexity

If there is very limited data, high variance in the parameters

How can we deal with this?

Answer: Make independence assumptions

Recall: Conditional independence

Suppose X, Y and Z are random variables

X is conditionally independent of Y given Z if the probability distribution of X is independent of the value of Y when Z is observed P(X|Y,Z) = P(X|Z)

Or equivalently

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

Modeling the features

 $P(x_1, x_2, \dots, x_d | y)$ required k(2^d – 1) parameters

What if <u>all the features were conditionally independent</u> <u>given the label</u>? The Naïve Bayes Assumption

Modeling the features

 $P(x_1, x_2, \dots, x_d | y)$ required k(2^d – 1) parameters

What if <u>all the features were conditionally independent</u> <u>given the label</u>? The Naïve Bayes Assumption

That is,

 $P(x_1, x_2, \cdots, x_d | y) = P(x_1 | y) P(x_2 | y) \cdots P(x_d | y)$

Requires only d numbers for each label. kd parameters overall. Not bad!

Assumption: Features are conditionally independent given the label Y

To predict, we need two sets of probabilities

- Prior P(y)
- For each x_j , we have the likelihood $P(x_j | y)$

Assumption: Features are conditionally independent given the label Y

To predict, we need two sets of probabilities

- Prior P(y)
- For each x_j , we have the likelihood $P(x_j | y)$

Decision rule

$$h_{NB}(\boldsymbol{x}) = \underset{y}{\operatorname{argmax}} P(y) P(x_1, x_2, \cdots, x_d | y)$$

Assumption: Features are conditionally independent given the label Y

To predict, we need two sets of probabilities

- Prior P(y)
- For each x_j , we have the likelihood $P(x_j | y)$

Decision rule

$$h_{NB}(\mathbf{x}) = \underset{y}{\operatorname{argmax}} P(y) P(x_1, x_2, \cdots, x_d | y)$$
$$= \underset{y}{\operatorname{argmax}} P(y) \prod_{j} P(x_j | y)$$

Decision boundaries of naïve Bayes

What is the decision boundary of the naïve Bayes classifier?

Consider the two class case. We predict the label to be + if

$$P(y = +) \prod_{j} P(x_j | y = +) > P(y = -) \prod_{j} P(x_j | y = -)$$
Decision boundaries of naïve Bayes

What is the decision boundary of the naïve Bayes classifier?

Consider the two class case. We predict the label to be + if

$$P(y = +) \prod_{j} P(x_{j}|y = +) > P(y = -) \prod_{j} P(x_{j}|y = -)$$
$$\frac{P(y = +) \prod_{j} P(x_{j}|y = +)}{P(y = -) \prod_{j} P(x_{j}|y = -)} > 1$$

Decision boundaries of naïve Bayes

What is the decision boundary of the naïve Bayes classifier?

Taking log and simplifying, we get

$$\log \frac{P(y = -|\boldsymbol{x})}{P(y = +|\boldsymbol{x})} = \boldsymbol{w}^T \boldsymbol{x} + b$$

This is a linear function of the feature space!

Easy to prove. See note on course website

Today's lecture

- The naïve Bayes Classifier
- Learning the naïve Bayes Classifier
- Practical Concerns

• What is the hypothesis function *h* defined by?

- What is the hypothesis function *h* defined by?
 - A collection of probabilities
 - Prior for each label: P(y)
 - Likelihoods for feature x_j given a label: $P(x_j | y)$

- What is the hypothesis function *h* defined by?
 - A collection of probabilities
 - Prior for each label: P(y)
 - Likelihoods for feature x_j given a label: $P(x_j | y)$

Suppose we have a data set $D = \{(x_i, y_i)\}$ with m examples

- What is the hypothesis function *h* defined by?
 - A collection of probabilities
 - Prior for each label: P(y)
 - Likelihoods for feature x_i given a label: $P(x_i | y)$

Suppose we have a data set $D = \{(x_i, y_i)\}$ with m examples

A note on convention for this section:

- Examples in the dataset are indexed by the subscript i (e.g. x_i)
- Features within an example are indexed by the subscript *j*
 - The j^{th} feature of the i^{th} example will be x_{ij}

- What is the hypothesis function *h* defined by?
 - A collection of probabilities
 - Prior for each label: P(y)
 - Likelihoods for feature x_i given a label: $P(x_i | y)$

If we have a data set $D = \{(x_i, y_i)\}$ with m examples

And we want to learn the classifier in a probabilistic way

- What is a probabilistic criterion to select the hypothesis?

Maximum likelihood estimation

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D|h)$$

Here h is defined by all the probabilities used to construct the naïve Bayes decision

 $h_{ML} = \operatorname*{arg\,max}_{h \in H} P(D|h)$

Given a dataset $D = \{(x_i, y_i)\}$ with m examples

$$h_{ML} = \arg \max_{h} \prod_{i=1}^{m} P((\mathbf{x}_i, y_i)|h)$$

Each example in the dataset is independent and identically distributed

So we can represent $P(D \mid h)$ as this product

 $h_{ML} = \operatorname*{arg\,max}_{h \in H} P(D|h)$

Given a dataset $D = \{(x_i, y_i)\}$ with m examples

$$h_{ML} = \arg \max_{h} \prod_{i=1}^{m} P((\mathbf{x}_i, y_i)|h)$$

Each example in the dataset is independent and identically distributed

So we can represent $P(D \mid h)$ as this product

Asks "What probability would this particular h assign to the pair (\mathbf{x}_i, y_i) ?"

Given a dataset $D = \{(x_i, y_i)\}$ with m examples

$$h_{ML} = \arg \max_{h} \prod_{i=1}^{m} P((\mathbf{x}_{i}, y_{i})|h)$$
$$= \arg \max_{h} \prod_{i=1}^{m} P(\mathbf{x}_{i}|y_{i}, h) P(y_{i}|h)$$

Given a dataset $D = \{(x_i, y_i)\}$ with m examples

$$h_{ML} = \arg \max_{h} \prod_{i=1}^{m} P((\mathbf{x}_{i}, y_{i})|h)$$

$$= \arg \max_{h} \prod_{i=1}^{m} \frac{P(\mathbf{x}_{i}|y_{i}, h)}{P(y_{i}|h)} P(y_{i}|h)$$

$$x_{ij} \text{ is the jth} feature of \mathbf{x}_{i}$$

$$= \arg \max_{h} \prod_{i=1}^{m} P(y_{i}|h) \prod_{j} \frac{P(x_{i,j}|y_{i}, h)}{P(x_{i,j}|y_{i}, h)}$$

The Naïve Bayes assumption

Given a dataset $D = \{(x_i, y_i)\}$ with m examples

$$h_{ML} = \arg \max_{h} \prod_{i=1}^{m} P((\mathbf{x}_{i}, y_{i})|h)$$

=
$$\arg \max_{h} \prod_{i=1}^{m} P(\mathbf{x}_{i}|y_{i}, h) P(y_{i}|h)$$

=
$$\arg \max_{h} \prod_{i=1}^{m} P(y_{i}|h) \prod_{j} P(x_{i,j}|y_{i}, h)$$

How do we proceed?

Given a dataset $D = \{(x_i, y_i)\}$ with m examples

$$h_{ML} = \arg \max_{h} \prod_{i=1}^{m} P((\mathbf{x}_{i}, y_{i})|h)$$

$$= \arg \max_{h} \prod_{i=1}^{m} P(\mathbf{x}_{i}|y_{i}, h) P(y_{i}|h)$$

$$= \arg \max_{h} \prod_{i=1}^{m} P(y_{i}|h) \prod_{j} P(x_{i,j}|y_{i}, h)$$

$$= \arg \max_{h} \sum_{i=1}^{m} \log P(y_{i}|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_{i}, h)$$

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

What next?

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

What next?

We need to make a modeling assumption about the functional form of these probability distributions

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

For simplicity, suppose there are two labels 1 and 0 and all features are binary

• **Prior**: P(y = 1) = p and P(y = 0) = 1 - p

That is, the prior probability is from the Bernoulli distribution.

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

For simplicity, suppose there are two labels 1 and 0 and all features are binary

- **Prior**: P(y = 1) = p and P(y = 0) = 1 p
- Likelihood for each feature given a label
 - $P(x_j = 1 | y = 1) = a_j \text{ and } P(x_j = 0 | y = 1) = 1 a_j$

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

For simplicity, suppose there are two labels 1 and 0 and all features are binary

- **Prior**: P(y = 1) = p and P(y = 0) = 1 p
- Likelihood for each feature given a label

•
$$P(x_j = 1 | y = 1) = a_j \text{ and } P(x_j = 0 | y = 1) = 1 - a_j$$

• $P(x_j = 1 | y = 0) = b_j$ and $P(x_j = 0 | y = 0) = 1 - b_j$

That is, the likelihood of each feature is also is from the Bernoulli distribution.

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

For simplicity, suppose there are two labels 1 and 0 and all features are binary

- **Prior**: P(y = 1) = p and P(y = 0) = 1 p
- Likelihood for each feature given a label
 - $P(x_j = 1 | y = 1) = a_j \text{ and } P(x_j = 0 | y = 1) = 1 a_j$
 - $P(x_j = 1 | y = 0) = b_j \text{ and } P(x_j = 0 | y = 0) = 1 b_j$

h consists of p, all the a's and b's

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

• Prior:
$$P(y = 1) = p$$
 and $P(y = 0) = 1 - p$

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log \frac{P(y_i|h)}{P(y_i|h)} + \sum_{i} \sum_{j} \log P(x_{i,j}|y_i,h)$$

• Prior: P(y = 1) = p and P(y = 0) = 1 - p

$$P(y_i|h) = p^{[y_i=1]}(1-p)^{[y_i=0]}$$

[z] is called the indicator function or the lverson bracket

Its value is 1 if the argument z is true and zero otherwise

Maximum likelihood estimation

$$h_{ML} = \arg\max_{h} \sum_{i=1}^{m} \log P(y_i|h) + \sum_{i} \sum_{j} \log \frac{P(x_{i,j}|y_i,h)}{P(x_{i,j}|y_i,h)}$$

Likelihood for each feature given a label

•
$$P(x_j = 1 | y = 1) = a_j \text{ and } P(x_j = 0 | y = 1) = 1 - a_j$$

• $P(x_j = 1 | y = 0) = b_j$ and $P(x_j = 0 | y = 0) = 1 - b_j$

$$P(x_{ij}|y_i,h) = a_j^{[y_i=1,x_{ij}=1]} \times (1-a_j)^{[y_i=1,x_{ij}=0]} \times b_j^{[y_i=0,x_{ij}=1]} \times (1-b_j)^{[y_i=0,x_{ij}=0]}$$

Substituting and deriving the argmax, we get

$$p = \frac{\operatorname{Count}(y_i = 1)}{\operatorname{Count}(y_i = 1) + \operatorname{Count}(y_i = 0)} \quad \longleftarrow P(y = 1) = p$$

Substituting and deriving the argmax, we get

$$p = \frac{\text{Count}(y_i = 1)}{\text{Count}(y_i = 1) + \text{Count}(y_i = 0)} \quad \longleftarrow P(y = 1) = p$$
$$a_j = \frac{\text{Count}(y_i = 1, x_{ij} = 1)}{\text{Count}(y_i = 1)} \quad \longleftarrow P(x_j = 1 \mid y = 1) = a_j$$

Substituting and deriving the argmax, we get

$$p = \frac{\operatorname{Count}(y_i = 1)}{\operatorname{Count}(y_i = 1) + \operatorname{Count}(y_i = 0)} \quad \longleftarrow P(y = 1) = p$$

$$a_j = \frac{\operatorname{Count}(y_i = 1, x_{ij} = 1)}{\operatorname{Count}(y_i = 1)} \quad \longleftarrow P(x_j = 1 \mid y = 1) = a_j$$

$$b_j = \frac{\operatorname{Count}(y_i = 0, x_{ij} = 1)}{\operatorname{Count}(y_i = 0)} \quad \longleftarrow P(x_j = 1 \mid y = 0) = b_j$$

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

With the assumption that all our probabilities are from the Bernoulli distribution

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

$$P(Play = +) = \frac{9}{14}$$
 $P(Play = -) = \frac{5}{14}$

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

$$P(Play = +) = \frac{9}{14}$$
 $P(Play = -) = \frac{5}{14}$

$$P(\mathbf{0} = S | Play = +) = \frac{2}{9}$$

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	М	Ν	W	+
11	S	М	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

$$P(Play = +) = \frac{9}{14}$$
 $P(Play = -) = \frac{5}{14}$

$$P(\mathbf{0} = S | Play = +) = \frac{2}{9}$$

 $P(\mathbf{0} = R | Play = +) = \frac{3}{9}$

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	Μ	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	Μ	Н	W	-
9	S	С	Ν	W	+
10	R	Μ	Ν	W	+
11	S	Μ	Ν	S	+
12	0	Μ	Н	S	+
13	0	Н	Ν	W	+
14	R	Μ	Н	S	-

$$P(Play = +) = \frac{9}{14}$$
 $P(Play = -) = \frac{5}{14}$

$$P(\mathbf{0} = S | Play = +) = \frac{2}{9}$$
$$P(\mathbf{0} = R | Play = +) = \frac{3}{9}$$

$$P(\mathbf{0} = 0 | Play = +) = \frac{4}{9}$$

And so on, for other attributes and also for Play = -

Naïve Bayes: Learning and Prediction

• Learning

- Count how often features occur with each label. Normalize to get likelihoods
- Priors from fraction of examples with each label
- Generalizes to multiclass

• Prediction

- Use learned probabilities to find highest scoring label

Today's lecture

- The naïve Bayes Classifier
- Learning the naïve Bayes Classifier
- Practical concerns + an example

Important caveats with Naïve Bayes

- 1. Features need not be conditionally independent given the label
 - Just because we assume that they are doesn't mean that that's how they behave in nature
 - We made a modeling assumption because it makes computation and learning easier
- 2. Not enough training data to get good estimates of the probabilities from counts

Important caveats with Naïve Bayes

1. Features are not conditionally independent given the label

All bets are off if the naïve Bayes assumption is not satisfied

$$P(\mathbf{x}|y) \neq \prod P(x_j|y)$$

And yet, very often used in practice because of simplicity Works reasonably well even when the assumption is violated
Important caveats with Naïve Bayes

2. Not enough training data to get good estimates of the probabilities from counts

The basic operation for learning likelihoods is counting how often a feature occurs with a label.

What if we never see a particular feature with a particular label? Eg: Suppose we never observe Temperature = cold with PlayTennis= Yes

Should we treat those counts as zero?

Important caveats with Naïve Bayes

2. Not enough training data to get good estimates of the probabilities from counts

The basic operation for learning likelihoods is counting how often a feature occurs with a label.

What if we never see a particular feature with a particular label? Eg: Suppose we never observe Temperature = cold with PlayTennis= Yes

Should we treat those counts as zero? But that will make the probabilities zero

Important caveats with Naïve Bayes

2. Not enough training data to get good estimates of the probabilities from counts

The basic operation for learning likelihoods is counting how often a feature occurs with a label.

What if we never see a particular feature with a particular label? Eg: Suppose we never observe Temperature = cold with PlayTennis= Yes

Should we treat those counts as zero? But that will make the probabilities zero

Answer: Smoothing

- Add fake counts (very small numbers so that the counts are not zero)
- The Bayesian interpretation of smoothing: Priors on the hypothesis (MAP learning)

- Instance space: Text documents
- Labels: Spam or NotSpam
- Goal: To learn a function that can predict whether a new document is Spam or NotSpam

How would you build a Naïve Bayes classifier?

Let us brainstorm

How to represent documents? How to estimate probabilities? How to classify?

1. Represent documents by a vector of words A sparse vector consisting of one feature per word

- Represent documents by a vector of words
 A sparse vector consisting of one feature per word
- 2. Learning from N labeled documents

- Represent documents by a vector of words
 A sparse vector consisting of one feature per word
- 2. Learning from N labeled documents
 - 1. Priors $P(\text{Spam}) = \frac{\text{Count}(\text{Spam})}{N}$; P(NotSpam) = 1 P(Spam)

- Represent documents by a vector of words
 A sparse vector consisting of one feature per word
- 2. Learning from N labeled documents
 - 1. Priors $P(\text{Spam}) = \frac{\text{Count}(\text{Spam})}{N}$; P(NotSpam) = 1 P(Spam)
 - 2. For each word w in vocabulary : $P(w|Spam) = \frac{Count (w, Spam) + 1}{Count (Spam) + |Vocabulary|}$ $P(w|NotSpam) = \frac{Count (w, NotSpam) + 1}{Count (NotSpam) + |Vocabulary|}$

- Represent documents by a vector of words
 A sparse vector consisting of one feature per word
- 2. Learning from N labeled documents
 - 1. Priors $P(\text{Spam}) = \frac{\text{Count}(\text{Spam})}{N}$; P(NotSpam) = 1 P(Spam)

2. For each word w in vocabulary :

$$P(w|Spam) = \frac{Count(w, Spam) + 1}{Count(Spam) + |Vocabulary|}$$
How often does a word occur with a label?

$$P(w|NotSpam) = \frac{Count(w, NotSpam) + 1}{Count(NotSpam) + |Vocabulary|}$$

- Represent documents by a vector of words
 A sparse vector consisting of one feature per word
- 2. Learning from N labeled documents
 - 1. Priors $P(\text{Spam}) = \frac{\text{Count}(\text{Spam})}{N}$; P(NotSpam) = 1 P(Spam)

2. For each word w in vocabulary :

$$P(w|Spam) = \frac{Count (w, Spam) + 1}{Count (Spam) + |Vocabulary|}$$

$$P(w|NotSpam) = \frac{Count (w, NotSpam) + 1}{Count (NotSpam) + |Vocabulary|}$$

Continuous features

- So far, we have been looking at discrete features
 P(x_i | y) is a Bernoulli trial (i.e. a coin toss)
- We could model $P(x_i | y)$ with other distributions too
 - This is a separate assumption from the independence assumption that naive Bayes makes
 - Eg: For real valued features, $(X_j | Y)$ could be drawn from a normal distribution
- Exercise: Derive the maximum likelihood estimate when the features are assumed to be drawn from the normal distribution

Summary: Naïve Bayes

- Independence assumption
 - All features are independent of each other given the label
- Maximum likelihood learning: Learning is simple
 - Generalizes to real valued features
- Prediction via MAP estimation
 - Generalizes to beyond binary classification
- Important caveats to remember
 - Smoothing
 - Independence assumption may not be valid
- Decision boundary is linear for binary classification