
Machine	Learning

The	Naïve	Bayes	Classifier
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Today’s	lecture

• The	naïve	Bayes	Classifier

• Learning	the	naïve	Bayes	Classifier

• Practical	concerns
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Where	are	we?

We	have	seen	Bayesian	learning
– Using	a	probabilistic	criterion	to	select	a	hypothesis
– Maximum	a	posteriori	and	maximum	likelihood	learning

You	should	know	what	is	the	difference	between	them

We	could	also	learn	functions	that	predict probabilities	of	
outcomes

– Different	from	using	a	probabilistic	criterion	to	learn

Maximum	a	posteriori		(MAP)	prediction as	opposed	to	MAP	learning
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MAP	prediction

Using	the	Bayes	rule	for	predicting	𝑦 given	an	input	𝐱

𝑃 𝑌 = 𝑦 𝑋 = 𝐱 =
𝑃 𝑋 = 𝐱 𝑌 = 𝑦 𝑃 𝑌 = 𝑦

𝑃(𝑋 = 𝐱)

6

Posterior	probability	of	label	being	
y for	this	input	x
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Don’t	confuse	with	MAP	learning:	
finds	hypothesis	by	



MAP	prediction

Predict	the	label	𝑦 for	the	input	𝐱 using

argmax
.
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Likelihood of	observing	this	
input	x when	the	label	is	y

Prior	probability	of	the	label	
being	y

All	we	need	are	these	two	sets	of	probabilities



Example:	Tennis	again
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Temperature Wind P(T, W	|Tennis	=	Yes)

Hot Strong 0.15

Hot Weak 0.4

Cold Strong 0.1

Cold Weak 0.35

Temperature Wind P(T, W	|Tennis	=	No)

Hot Strong 0.4

Hot Weak 0.1

Cold Strong 0.3

Cold Weak 0.2

Play	tennis	 P(Play	tennis)

Yes 0.3

No 0.7
Prior

Likelihood

Without	any	other	information,	
what	is	the	prior	probability	that	I	
should	play	tennis?

On	days	that	I	do play	
tennis,	what	is	the	
probability	that	the	
temperature	is	T	and	
the	wind	is	W?

On	days	that	I	don’t play	
tennis,	what	is	the	
probability	that	the	
temperature	is	T	and	the	
wind	is	W?
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P(H,	W	|	Yes)	P(Yes)	=	0.4	£ 0.3
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P(H,	W	|	No)	P(No)	=	0.1	£ 0.7
=	0.07
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How	hard	is	it	to	learn	probabilistic	models?

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Outlook: S(unny),	
O(vercast),	
R(ainy)

Temperature: H(ot),	
M(edium),	
C(ool)

Humidity: H(igh),
N(ormal),	
L(ow)

Wind: S(trong),	
W(eak)
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We	need	to	learn	

1.The	prior	𝑃(Play? )
2.The	likelihoods	𝑃 x	 	Play? )



How	hard	is	it	to	learn	probabilistic	models?

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Prior	P(play?)	

• A	single	number	(Why	only	one?)

Likelihood	P(X	|	Play?)

• There	are	4	features

• For	each	value	of	Play? (+/-),	we	
need	a	value	for	each	possible	
assignment:	P(x1,	x2, x3,	x4 |	Play?)	

• (24 – 1)	parameters	in	each	case

One	for	each	assignment
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How	hard	is	it	to	learn	probabilistic	models?

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
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6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

3 3 3 2

Prior	P(play?)	

• A	single	number	(Why	only	one?)

Likelihood	P(X	|	Play?)

• There	are	4	features

• For	each	value	of	Play? (+/-),	we	
need	a	value	for	each	possible	
assignment:	P(O,	T,	H,	W	|	Play?)	

22
Values	for	this	feature



How	hard	is	it	to	learn	probabilistic	models?

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
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10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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Prior	P(play?)	

• A	single	number	(Why	only	one?)

Likelihood	P(X	|	Play?)

• There	are	4	features

• For	each	value	of	Play? (+/-),	we	
need	a	value	for	each	possible	
assignment:	P(O,	T,	H,	W	|	Play?)	

• (3 ⋅ 3 ⋅ 3 ⋅ 2	 − 1)	parameters	in	
each	case

One	for	each	assignment

23
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How	hard	is	it	to	learn	probabilistic	models?

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Prior	P(Y)	

• If	there	are	k	labels,	then	k	– 1	
parameters	(why	not	k?)

Likelihood	P(X	|	Y)

• If	there	are	d	features,	then:

• We	need	a	value	for	each	possible	
P(x1,	x2,	!,	xd |	y)	for	each	y

• k(2d – 1)	parameters

Need	a	lot	of	data	to	estimate	these	
many	numbers!

24

In	general
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How	hard	is	it	to	learn	probabilistic	models?

Prior	P(Y)	

• If	there	are	k	labels,	then	k	– 1	
parameters	(why	not	k?)

Likelihood	P(X	|	Y)

• If	there	are	d	Boolean		features:

• We	need	a	value	for	each	
possible	P(x1,	x2,	!,	xd |	y)	for	
each	y

• k(2d – 1)	parameters

Need	a	lot	of	data	to	estimate	these	
many	numbers!

27

High	model	complexity

If	there	is	very	limited	
data,	high	variance	in	the	
parameters
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High	model	complexity

If	there	is	very	limited	
data,	high	variance	in	the	
parameters

How	can	we	deal	with	this?

Answer:	Make	independence	
assumptions



Recall:	Conditional	independence

Suppose	X,	Y	and	Z	are	random	variables

X	is	conditionally	independent	of	Y	given	Z	if	the	
probability	distribution	of	X	is	independent	of	the	value	
of	Y	when	Z	is	observed

Or	equivalently
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Modeling	the	features

𝑃(𝑥:, 𝑥<,⋯ , 𝑥>|𝑦) required	k(2d – 1)	parameters	

What	if	all	the	features	were	conditionally	independent	
given	the	label?

That	is,	
𝑃 𝑥:, 𝑥<,⋯ , 𝑥> 𝑦 = 𝑃 𝑥: 𝑦 𝑃 𝑥< 𝑦 ⋯𝑃 𝑥> 𝑦 	

Requires	only	d	numbers	for	each	label.	kd features	
overall.	Not	bad!

31

The	Naïve	Bayes	Assumption
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The	Naïve	Bayes	Assumption



The	Naïve	Bayes	Classifier

Assumption:	Features	are	conditionally	independent	given	the	
label	Y

To	predict,	we	need	two	sets	of	probabilities
– Prior	P(y)
– For	each	xj,	we	have	the	likelihood	P(xj |	y)
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The	Naïve	Bayes	Classifier

Assumption:	Features	are	conditionally	independent	given	the	
label	Y

To	predict,	we	need	two	sets	of	probabilities
– Prior	P(y)
– For	each	xj,	we	have	the	likelihood	P(xj |	y)

Decision	rule

34

ℎAB 𝒙 = argmax
.

𝑃 𝑦 𝑃 𝑥:, 𝑥<,⋯ , 𝑥> 𝑦)
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.

𝑃 𝑦 𝑃 𝑥:, 𝑥<,⋯ , 𝑥> 𝑦)

						= argmax
.

𝑃 𝑦 D𝑃(𝑥E|𝑦)
�
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Decision	boundaries	of	naïve	Bayes

What	is	the	decision	boundary	of	the	naïve	Bayes	classifier?

Consider	the	two	class	case.	We	predict	the	label	to	be	+	if	

36

𝑃 𝑦 = + D𝑃 𝑥E 𝑦 = + > 𝑃 𝑦 = − D𝑃 𝑥E 𝑦 = −)
�

E

�

E
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𝑃 𝑦 = + D𝑃 𝑥E 𝑦 = + > 𝑃 𝑦 = − D𝑃 𝑥E 𝑦 = −)
�
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�

E

𝑃 𝑦 = + ∏ 𝑃 𝑥E 𝑦 = +)�
E
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E
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Decision	boundaries	of	naïve	Bayes

What	is	the	decision	boundary	of	the	naïve	Bayes	classifier?

Taking	log	and	simplifying,	we	get

38

This	is	a	linear	function	of	the	feature	space!

Easy	to	prove.	See	note	on	course	website

log
𝑃(𝑦 = −|𝒙)
𝑃(𝑦 = +|𝒙) = 𝒘L𝒙 + 𝑏



Today’s	lecture

• The	naïve	Bayes	Classifier

• Learning	the	naïve	Bayes	Classifier

• Practical	Concerns
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Learning	the	naïve	Bayes	Classifier

• What	is	the	hypothesis	function	h defined	by?
– A	collection	of	probabilities

• Prior	for	each	label:	P(y)	
• Likelihoods	for	feature	xj given	a	label:	P(xj|	y)

If	we	have	a	data	set	D	=	{(xi,	yi)}	with	m	examples
And	we	want	to	learn	the	classifier	in	a	probabilistic	way
– What	is	the	probabilistic	criterion	to	select	the	hypothesis?
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Learning	the	naïve	Bayes	Classifier

• What	is	the	hypothesis	function	h defined	by?
– A	collection	of	probabilities

• Prior	for	each	label:	𝑃(𝑦)
• Likelihoods	for	feature	xj given	a	label:	𝑃(𝑥𝑗|	𝑦)

Suppose	we	have	a	data	set	𝐷 = {(𝒙𝑖, 𝑦𝑖)}	with	m	
examples
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Learning	the	naïve	Bayes	Classifier

• What	is	the	hypothesis	function	h defined	by?
– A	collection	of	probabilities

• Prior	for	each	label:	𝑃(𝑦)
• Likelihoods	for	feature	xj given	a	label:	𝑃(𝑥𝑗|	𝑦)

Suppose	we	have	a	data	set	𝐷 = {(𝒙𝑖, 𝑦𝑖)}	with	m	
examples
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A	note	on	convention	for	this	section:
• Examples	in	the	dataset	are	indexed	by	the	subscript	𝑖 (e.g. 𝒙𝑖)	
• Features	within	an	example	are	indexed	by	the	subscript	𝑗

• The	𝑗ST feature	of	the	𝑖ST example	will	be	𝑥UE



Learning	the	naïve	Bayes	Classifier

• What	is	the	hypothesis	function	h defined	by?
– A	collection	of	probabilities

• Prior	for	each	label:	𝑃(𝑦)
• Likelihoods	for	feature	xj given	a	label:	𝑃(𝑥𝑗|	𝑦)

If	we	have	a	data	set	𝐷 = {(𝒙𝑖, 𝑦𝑖)}	with	m	examples
And	we	want	to	learn	the	classifier	in	a	probabilistic	way
– What	is	a	probabilistic	criterion	to	select	the	hypothesis?
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Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation

45

Here	h	is	defined	by	all	the	probabilities	used	to	construct	the	naïve	Bayes	decision	



Maximum	likelihood	estimation

Given	a	dataset	𝐷 = {(𝒙𝑖, 𝑦𝑖)} with	m	examples
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Each	example	in	the	dataset	is	independent	and	identically	distributed

So	we	can	represent	P(D|	h)	as	this	product



Maximum	likelihood	estimation

Given	a	dataset	𝐷 = {(𝒙𝑖, 𝑦𝑖)}	with	m	examples

47

Asks	“What	probability	would	this	
particular	h assign	to	the	pair	(xi,	yi)?”

Each	example	in	the	dataset	is	independent	and	identically	distributed

So	we	can	represent	P(D|	h)	as	this	product



Maximum	likelihood	estimation

Given	a	dataset	D	=	{(xi,	yi)}	with	m	examples
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Maximum	likelihood	estimation

Given	a	dataset	D	=	{(xi,	yi)}	with	m	examples
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The	Naïve	Bayes	assumption

xij is	the	jth
feature	of	xi



Maximum	likelihood	estimation

Given	a	dataset	D	=	{(xi,	yi)}	with	m	examples
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How	do	we	proceed?



Maximum	likelihood	estimation

Given	a	dataset	D	=	{(xi,	yi)}	with	m	examples
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Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation

52

What	next?



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation

53

What	next?

We	need	to	make	a	modeling	assumption	about	the	functional	form	of	these	
probability	distributions



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation
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For	simplicity,	suppose	there	are	two	labels	1 and	0 and	all	
features	are	binary

• Prior:	P(y	=	1)	=	p and	P	(y	=	0)	=	1	– p

That	is,	the	prior	probability	is	from	the	Bernoulli	distribution.



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation
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For	simplicity,	suppose	there	are	two	labels	1 and	0 and	all	
features	are	binary

• Prior:	P(y	=	1)	=	p and	P	(y	=	0)	=	1	– p

• Likelihood for	each	feature	given	a	label
• P(xj =	1	|	y	=	1)	=	aj and	P(xj =	0 |	y	=	1)	=	1	– aj
• P(xj =	1	|	y	=	0)	=	bj and	P(xj =	0 |	y	=	0)	=	1	- bj



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation
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For	simplicity,	suppose	there	are	two	labels	1 and	0 and	all	
features	are	binary

• Prior:	P(y	=	1)	=	p and	P	(y	=	0)	=	1	– p

• Likelihood for	each	feature	given	a	label
• P(xj =	1	|	y	=	1)	=	aj and	P(xj =	0 |	y	=	1)	=	1	– aj
• P(xj =	1	|	y	=	0)	=	bj and	P(xj =	0 |	y	=	0)	=	1	- bj

That	is,	the	
likelihood	of	each	
feature	is	also	is	
from	the	Bernoulli	
distribution.



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation
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For	simplicity,	suppose	there	are	two	labels	1 and	0 and	all	
features	are	binary

• Prior:	P(y	=	1)	=	p and	P	(y	=	0)	=	1	– p

• Likelihood for	each	feature	given	a	label
• P(xj =	1	|	y	=	1)	=	aj and	P(xj =	0 |	y	=	1)	=	1	– aj
• P(xj =	1	|	y	=	0)	=	bj and	P(xj =	0 |	y	=	0)	=	1	- bj

h	consists	of	p,	all	
the	a’s	and	b’s	



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation
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• Prior:	P(y	=	1)	=	p and	P	(y	=	0)	=	1	– p



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation
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• Prior:	P(y	=	1)	=	p and	P	(y	=	0)	=	1	– p

[z]	is	called	the	indicator	function	or	the	Iverson	bracket

Its	value	is	1	if	the	argument	z	is	true	and	zero	otherwise



Learning	the	naïve	Bayes	Classifier

Maximum	likelihood	estimation

60

Likelihood	for	each	feature	given	a	label
• P(xj =	1	|	y	=	1)	=	aj and	P(xj =	0 |	y	=	1)	=	1	– aj
• P(xj =	1	|	y	=	0)	=	bj and	P(xj =	0 |	y	=	0)	=	1	- bj



Learning	the	naïve	Bayes	Classifier

Substituting	and	deriving	the	argmax,	we	get
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P(y	=	1)	=	p



Learning	the	naïve	Bayes	Classifier

Substituting	and	deriving	the	argmax,	we	get
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P(y	=	1)	=	p

P(xj =	1	|	y	=	1)	=	aj



Learning	the	naïve	Bayes	Classifier

Substituting	and	deriving	the	argmax,	we	get
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P(y	=	1)	=	p

P(xj =	1	|	y	=	1)	=	aj

P(xj =	1	|	y	=	0)	=	bj



Let’s	learn	a	naïve	Bayes	classifier

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

64

With	the	assumption	that	all	
our	probabilities	are	from	the	
Bernoulli	distribution



Let’s	learn	a	naïve	Bayes	classifier

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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𝑃 𝑃𝑙𝑎𝑦	 = 	+ =
9
14 𝑃 𝑃𝑙𝑎𝑦	 = 	− =

5
14



Let’s	learn	a	naïve	Bayes	classifier

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
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13 O H N W +
14 R M H S -
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𝑃(𝑶	 = 	𝑆	|	𝑃𝑙𝑎𝑦	 = 	+) =
2
9

𝑃 𝑃𝑙𝑎𝑦	 = 	+ =
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14 𝑃 𝑃𝑙𝑎𝑦	 = 	− =

5
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Let’s	learn	a	naïve	Bayes	classifier
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O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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Let’s	learn	a	naïve	Bayes	classifier
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O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

𝑃(𝑶	 = 	𝑂	|	𝑃𝑙𝑎𝑦	 = 	+) 	= 	
4
9	

And	so	on,	for	other	attributes	and	also	for	Play	=	-

𝑃(𝑶	 = 	𝑅	|	𝑃𝑙𝑎𝑦	 = 	+) 	= 	
3
9	

𝑃(𝑶	 = 	𝑆	|	𝑃𝑙𝑎𝑦	 = 	+) =
2
9

𝑃 𝑃𝑙𝑎𝑦	 = 	+ =
9
14 𝑃 𝑃𝑙𝑎𝑦	 = 	− =

5
14



Naïve	Bayes:	Learning	and	Prediction

• Learning
– Count	how	often	features	occur	with	each	label.	Normalize	
to	get	likelihoods

– Priors	from	fraction	of	examples	with	each	label
– Generalizes	to	multiclass

• Prediction
– Use	learned	probabilities	to	find	highest	scoring	label
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Today’s	lecture

• The	naïve	Bayes	Classifier

• Learning	the	naïve	Bayes	Classifier

• Practical	concerns	+	an	example
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Important	caveats	with	Naïve	Bayes

1. Features	need	not	be	conditionally	independent	
given	the	label
– Just	because	we	assume	that	they	are	doesn’t	mean	that	

that’s	how	they	behave	in	nature
– We	made	a	modeling	assumption	because	it	makes	

computation and	learning	easier

2. Not	enough	training	data	to	get	good	estimates	of	
the	probabilities	from	counts
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Important	caveats	with	Naïve	Bayes

1. Features	are	not	conditionally	independent	given	
the	label

All	bets	are	off	if	the	naïve	Bayes	assumption	is	not	satisfied

And	yet,	very	often	used	in	practice	because	of	simplicity
Works	reasonably	well	even	when	the	assumption	is	violated
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Important	caveats	with	Naïve	Bayes

2. Not	enough	training	data	to	get	good	estimates	of	
the	probabilities	from	counts

73

The	basic	operation	for	learning	likelihoods	is	counting	how	often	a	feature	
occurs	with	a	label.

What	if	we	never	see	a	particular	feature	with	a	particular	label?
Eg:	Suppose	we	never	observe	Temperature	=	cold	with	PlayTennis=	Yes

Should	we	treat	those	counts	as	zero?	



Important	caveats	with	Naïve	Bayes

2. Not	enough	training	data	to	get	good	estimates	of	
the	probabilities	from	counts

74

The	basic	operation	for	learning	likelihoods	is	counting	how	often	a	feature	
occurs	with	a	label.

What	if	we	never	see	a	particular	feature	with	a	particular	label?
Eg:	Suppose	we	never	observe	Temperature	=	cold	with	PlayTennis=	Yes

Should	we	treat	those	counts	as	zero?	 But	that	will	make	the	probabilities	zero



Important	caveats	with	Naïve	Bayes

2. Not	enough	training	data	to	get	good	estimates	of	
the	probabilities	from	counts

75

The	basic	operation	for	learning	likelihoods	is	counting	how	often	a	feature	
occurs	with	a	label.

What	if	we	never	see	a	particular	feature	with	a	particular	label?
Eg:	Suppose	we	never	observe	Temperature	=	cold	with	PlayTennis=	Yes

Should	we	treat	those	counts	as	zero?	

Answer:	Smoothing
• Add	fake	counts	(very	small	numbers	so	that	the	counts	are	not	zero)
• The	Bayesian	interpretation	of	smoothing:	Priors on	the	hypothesis	(MAP	learning)

But	that	will	make	the	probabilities	zero



Example:	Classifying	text

• Instance	space:	Text	documents
• Labels:	Spam or	NotSpam

• Goal:	To	learn	a	function	that	can	predict	whether	a	
new	document	is	Spam or	NotSpam

How	would	you	build	a	Naïve	Bayes	classifier?
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Let	us	brainstorm

How	to	represent	documents?
How	to	estimate	probabilities?
How	to	classify?



Example:	Classifying	text

1. Represent	documents	by	a	vector	of	words
A	sparse	vector	consisting	of	one	feature	per	word	

2. Learning	from	N	labeled	documents
1. Priors

2. For	each	word	w	in	vocabulary	:
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Example:	Classifying	text

1. Represent	documents	by	a	vector	of	words
A	sparse	vector	consisting	of	one	feature	per	word	

2. Learning	from	N	labeled	documents
1. Priors

2. For	each	word	w	in	vocabulary	:
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How	often	does	a	
word	occur	with	
a	label?



Example:	Classifying	text

1. Represent	documents	by	a	vector	of	words
A	sparse	vector	consisting	of	one	feature	per	word	

2. Learning	from	N	labeled	documents
1. Priors

2. For	each	word	w	in	vocabulary	:
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Smoothing



Continuous	features

• So	far,	we	have	been	looking	at	discrete	features
– P(xj |	y)	is	a	Bernoulli	trial	(i.e.	a	coin	toss)

• We	could	model	P(xj |	y)	with	other	distributions	too
– This	is	a	separate	assumption	from	the	independence	

assumption	that	naive	Bayes	makes
– Eg:	For	real	valued	features,	(Xj |	Y)	could	be	drawn	from	a	

normal	distribution

• Exercise:	Derive	the	maximum	likelihood	estimate	when	
the	features	are	assumed	to	be	drawn	from	the	normal	
distribution
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Summary:	Naïve	Bayes

• Independence	assumption
– All	features	are	independent	of	each	other	given	the	label

• Maximum	likelihood	learning:	Learning	is	simple
– Generalizes	to	real	valued	features

• Prediction	via	MAP	estimation
– Generalizes	to	beyond	binary	classification

• Important	caveats	to	remember
– Smoothing
– Independence	assumption	may	not	be	valid

• Decision	boundary	is	linear	for	binary	classification
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