The Perceptron Mistake Bound

Machine Learning

Some slides based on lectures from Dan Roth, Avrim Blum and others

Where are we?

- The Perceptron Algorithm
- Variants of Perceptron
- Perceptron Mistake Bound

Convergence

Convergence theorem

 If there exist a set of weights that are consistent with the data (i.e. the data is linearly separable), the perceptron algorithm will converge.

Convergence

Convergence theorem

 If there exist a set of weights that are consistent with the data (i.e. the data is linearly separable), the perceptron algorithm will converge.

Cycling theorem

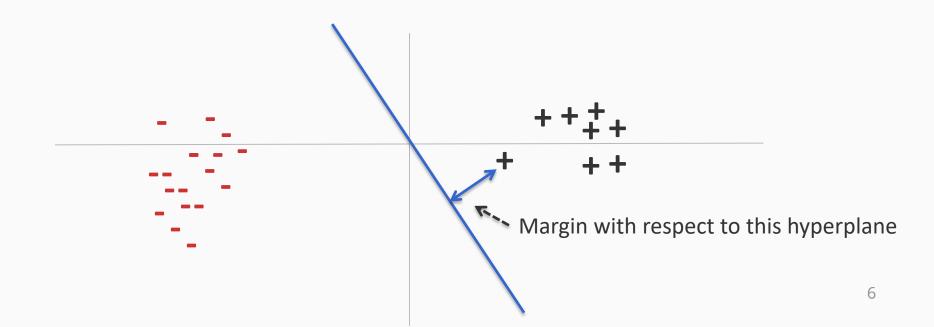
 If the training data is *not* linearly separable, then the learning algorithm will eventually repeat the same set of weights and enter an infinite loop

Perceptron Learnability

- Obviously Perceptron cannot learn what it cannot represent
 - Only linearly separable functions
- Minsky and Papert (1969) wrote an influential book demonstrating Perceptron's representational limitations
 - Parity functions can't be learned (XOR)
 - We have already seen that XOR is not linearly separable
 - In vision, if patterns are represented with local features, can't represent symmetry, connectivity

Margin

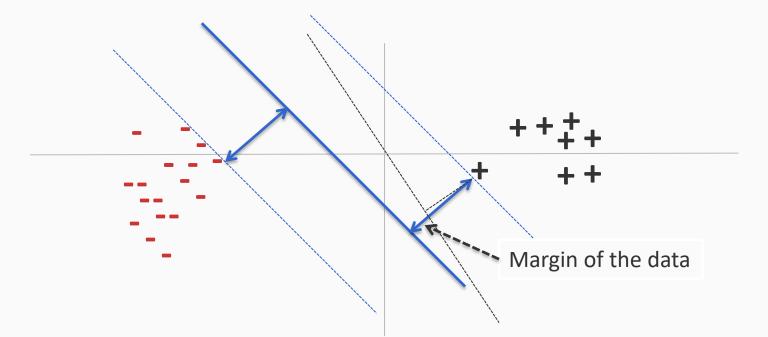
The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.



Margin

The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.

The margin of a data set (γ) is the maximum margin possible for that dataset using any weight vector.



Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots$ be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \mathfrak{R}^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$. We can always find such an *R*. Just look

We can always find such an R. Just look for the farthest data point from the origin.

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \Re^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \Re, \gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \Re^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \Re, \gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

The data has a margin γ . Importantly, the data is *separable*. γ is the complexity parameter that defines the separability of data.

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \Re^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \Re, \gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \Re^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \Re, \gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

If **u** hadn't been a unit vector, then we could scale it in the mistake bound. This will change the final mistake bound to $\left(\frac{||\mathbf{u}||\mathbf{R}}{\nu}\right)^2$.

Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots$ be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Suppose we have a binary classification dataset with n dimensional inputs.

Suppose there is a unit vector $\mathbf{u} \in \Re^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \Re, \gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

If the data is separable,...

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

...then the Perceptron algorithm will find a separating hyperplane after making a finite number of mistakes

Proof (preliminaries)

• Receive an input (\mathbf{x}_i, y_i) • if sgn $(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

The setting

- Initial weight vector **w** is all zeros
- Learning rate = 1
 - Effectively scales inputs, but does not change the behavior
- All training examples are contained in a ball of size *R*.
 - That is, for every example (\mathbf{x}_i, y_i) , we have

$$\left|\left|\mathbf{x}_{i}\right|\right| \leq R$$

- The training data is separable by margin γ using a unit vector **u**.
 - That is, for every example (\mathbf{x}_{ij}, y_i) , we have

$$y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$$

Receive an input (x_i, y_i)
if sgn(w^T_tx_i) ≠ y_i: Update w_{t+1} ← w_t + y_ix_i

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$

Receive an input (x_i, y_i)
if sgn(w^T_tx_i) ≠ y_i: Update w_{t+1} ← w_t + y_ix_i

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$

$$\mathbf{u}^T \mathbf{w}_{t+1} = \mathbf{u}^T \mathbf{w}_t + y_i \mathbf{u}^T \mathbf{x}_i$$

• Receive an input
$$(\mathbf{x}_i, y_i)$$

• if sgn $(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$:
Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$

$$\mathbf{u}^{T}\mathbf{w}_{t+1} = \mathbf{u}^{T}\mathbf{w}_{t} + y_{i}\mathbf{u}^{T}\mathbf{x}_{i}$$

$$\geq \mathbf{u}^{T}\mathbf{w}_{t} + \gamma \xrightarrow{\text{Because the data}}_{\text{is separable by a}}$$
margin γ

• Receive an input
$$(\mathbf{x}_i, y_i)$$

• if sgn $(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$:
Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$

$$\mathbf{u}^{T}\mathbf{w}_{t+1} = \mathbf{u}^{T}\mathbf{w}_{t} + y_{i}\mathbf{u}^{T}\mathbf{x}_{i}$$

$$\geq \mathbf{u}^{T}\mathbf{w}_{t} + \gamma \xrightarrow{\text{Because the data}}_{\text{is separable by a}}$$
margin γ

Because $\mathbf{w}_0 = \mathbf{0}$ (that is, $\mathbf{u}^T \mathbf{w}_0 = \mathbf{0}$), straightforward induction gives us $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$

Receive an input (x_i, y_i)
if sgn(w_t^Tx_i) ≠ y_i: Update w_{t+1} ← w_t + y_ix_i

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

Receive an input (x_i, y_i)
if sgn(w_t^Tx_i) ≠ y_i: Update w_{t+1} ← w_t + y_ix_i

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t} + y_{i}\mathbf{x}_{i}\|^{2}$$

= $\|\mathbf{w}_{t}\|^{2} + 2y_{i}(\mathbf{w}_{t}^{T}\mathbf{x}_{i}) + \|\mathbf{x}_{i}\|^{2}$

Receive an input (x_i, y_i)
if sgn(w^T_tx_i) ≠ y_i: Update w_{t+1} ← w_t + y_ix_i

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$\begin{aligned} \mathbf{w}_{t+1} \|^2 &= \|\mathbf{w}_t + y_i \mathbf{x}_i\|^2 \\ &= \|\mathbf{w}_t\|^2 + 2y_i (\mathbf{w}_t^T \mathbf{x}_i) + \|\mathbf{x}_i\|^2 \end{aligned}$$

$$\begin{aligned} &\text{The weight is updated only} \\ &\text{when there is a mistake. That is} \\ &\text{when } y_i \mathbf{w}_t^T \mathbf{x}_i < 0. \end{aligned}$$

Receive an input (x_i, y_i)
if sgn(w_t^Tx_i) ≠ y_i: Update w_{t+1} ← w_t + y_ix_i

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$\begin{aligned} \|\mathbf{w}_{t+1}\|^2 &= \|\mathbf{w}_t + y_i \mathbf{x}_i\|^2 \\ &= \|\mathbf{w}_t\|^2 + 2y_i (\mathbf{w}_t^T \mathbf{x}_i) + \|\mathbf{x}_i\|^2 \\ &\leq \|\mathbf{w}_t\|^2 + R^2 \end{aligned}$$

Because $\mathbf{w}_0 = \mathbf{0}$ (that is, $\mathbf{u}^T \mathbf{w}_0 = \mathbf{0}$), straightforward induction gives us $||\mathbf{w}_t||^2 \le tR^2$

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \geq \|\mathbf{w}_t\|$$

From (2)

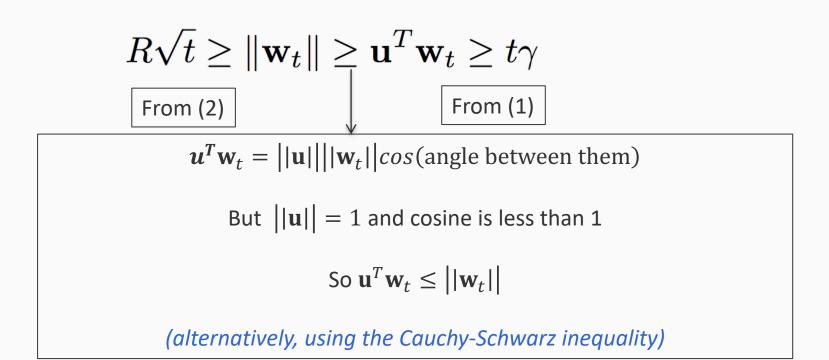
- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \ge \|\mathbf{w}_t\| \ge \mathbf{u}^T \mathbf{w}_t$$
From (2)
$$u^T \mathbf{w}_t = ||\mathbf{u}|| ||\mathbf{w}_t| |cos (angle between them)$$
But $||\mathbf{u}|| = 1$ and cosine is less than 1
So $\mathbf{u}^T \mathbf{w}_t \le ||\mathbf{w}_t||$

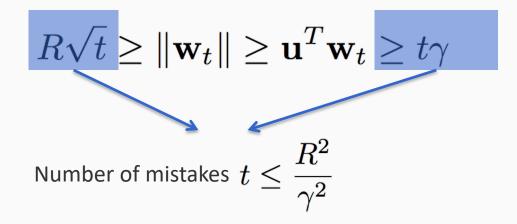
- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \ge ||\mathbf{w}_{t}|| \ge \mathbf{u}^{T}\mathbf{w}_{t}$$
From (2)
$$u^{T}\mathbf{w}_{t} = ||\mathbf{u}|| ||\mathbf{w}_{t}|| cos (angle between them)$$
But $||\mathbf{u}|| = 1$ and cosine is less than 1
$$So \mathbf{u}^{T}\mathbf{w}_{t} \le ||\mathbf{w}_{t}||$$
(alternatively, using the Cauchy-Schwarz inequality)
$$27$$

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

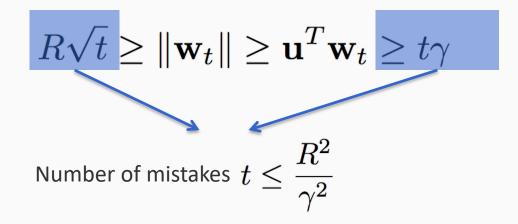


- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$



What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \ge t\gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$



Bounds the total number of mistakes!

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \le R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \Re^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \Re, \gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

The Perceptron Mistake bound

Number of mistakes \leq

 $\frac{R^2}{\gamma^2}$

- *R* is a property of the dimensionality. How?
 - For Boolean functions with n attributes, show that $R^2 = n$.
- γ is a property of the data
- Exercises:
 - How many mistakes will the Perceptron algorithm make for disjunctions with n attributes?
 - What are R and γ ?
 - How many mistakes will the Perceptron algorithm make for k-disjunctions with n attributes?
 - Find a sequence of examples that will force the Perceptron algorithm to make O(n) mistakes for a concept that is a k-disjunction.

Beyond the separable case

Good news

- Perceptron makes no assumption about data distribution, could be even adversarial
- After a fixed number of mistakes, you are done. Don't even need to see any more data
- Bad news: Real world is not linearly separable
 - Can't expect to never make mistakes again
 - What can we do: more features, try to be linearly separable if you can, use averaging

What you need to know

- What is the perceptron mistake bound?
- How to prove it

Summary: Perceptron

- Online learning algorithm, very widely used, easy to implement
- Additive updates to weights
- Geometric interpretation
- Mistake bound
- Practical variants abound
- You should be able to implement the Perceptron algorithm and its variants, and also prove the mistake bound theorem