
Machine Learning

The Perceptron Mistake Bound
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Some slides based on lectures from Dan Roth, Avrim Blum and others



Where are we?

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound

2



Convergence

Convergence theorem
– If there exist a set of weights that are consistent with the 

data (i.e. the data is linearly separable), the perceptron 
algorithm will converge.
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Convergence

Convergence theorem
– If there exist a set of weights that are consistent with the 

data (i.e. the data is linearly separable), the perceptron 
algorithm will converge.

Cycling theorem
– If the training data is not linearly separable, then the 

learning algorithm will eventually repeat the same set of 
weights and enter an infinite loop
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Perceptron Learnability

• Obviously Perceptron cannot learn what it cannot represent
– Only linearly separable functions

• Minsky and Papert (1969) wrote an influential book 
demonstrating Perceptron’s representational limitations

– Parity functions can’t be learned (XOR)
• We have already seen that XOR is not linearly separable

– In vision, if patterns are represented with local features, can’t 
represent symmetry, connectivity
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Margin

The margin of a hyperplane for a dataset is the distance between 
the hyperplane and the data point nearest to it.
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Margin

The margin of a hyperplane for a dataset is the distance between 
the hyperplane and the data point nearest to it.

The margin of a data set (𝛾) is the maximum margin possible for 
that dataset using any weight vector.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 
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We can always find such an 𝑅. Just look for 
the farthest data point from the origin.



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 

Suppose there is a unit vector 𝐮 ∈ ℜ$ (i.e., 𝐮 = 1) such that 
for some positive number 𝛾 ∈ ℜ, 𝛾 > 0, we have 𝑦#𝐮&𝐱# ≥ 𝛾 for 
every example (𝐱#, 𝑦#).
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 

Suppose there is a unit vector 𝐮 ∈ ℜ$ (i.e., 𝐮 = 1) such that 
for some positive number 𝛾 ∈ ℜ, 𝛾 > 0, we have 𝑦#𝐮&𝐱# ≥ 𝛾 for 
every example (𝐱#, 𝑦#).
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The data has a margin 𝛾. 
Importantly, the data is separable.
𝛾 is the complexity parameter that defines 
the separability of data.



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 

Suppose there is a unit vector 𝐮 ∈ ℜ$ (i.e., 𝐮 = 1) such that 
for some positive number 𝛾 ∈ ℜ, 𝛾 > 0, we have 𝑦#𝐮&𝐱# ≥ 𝛾 for 
every example (𝐱#, 𝑦#).

Then, the perceptron algorithm will make no more than  
⁄𝑅" 𝛾" mistakes on the training sequence.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 

Suppose there is a unit vector 𝐮 ∈ ℜ$ (i.e., 𝐮 = 1) such that 
for some positive number 𝛾 ∈ ℜ, 𝛾 > 0, we have 𝑦#𝐮&𝐱# ≥ 𝛾 for 
every example (𝐱#, 𝑦#).

Then, the perceptron algorithm will make no more than  
⁄𝑅" 𝛾" mistakes on the training sequence.
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If u hadn’t been a unit vector, then we could scale it in the mistake 

bound. This will change the final mistake bound to ! "
#

$
.



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 

Suppose there is a unit vector 𝐮 ∈ ℜ$ (i.e., 𝐮 = 1) such that 
for some positive number 𝛾 ∈ ℜ, 𝛾 > 0, we have 𝑦#𝐮&𝐱# ≥ 𝛾 for 
every example (𝐱#, 𝑦#).

Then, the perceptron algorithm will make no more than  
⁄𝑅" 𝛾" mistakes on the training sequence.

14

Suppose we have a binary classification dataset with n dimensional inputs.

If the data is separable,…

…then the Perceptron algorithm will find a separating 
hyperplane after making a finite number of mistakes



Proof (preliminaries)

The setting
• Initial weight vector 𝐰 is all zeros

• Learning rate = 1
– Effectively scales inputs, but does not change the behavior 

• All training examples are contained in a ball of size 𝑅. 
– That is, for every example (𝐱! , 𝑦!), we have

𝐱! ≤ 𝑅

• The training data is separable by margin 𝛾 using a unit vector 𝐮. 
– That is, for every example (𝐱! , 𝑦!), we have

𝑦!𝐮"𝐱! ≥ 𝛾

15

• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (1/3)

1. Claim: After t mistakes, 𝐮!𝐰" ≥ 𝑡𝛾
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• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (1/3)

1. Claim: After t mistakes, 𝐮!𝐰" ≥ 𝑡𝛾
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• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (1/3)

1. Claim: After t mistakes, 𝐮!𝐰" ≥ 𝑡𝛾
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Because the data 
is separable by a 
margin 𝛾

• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (1/3)

1. Claim: After t mistakes, 𝐮!𝐰" ≥ 𝑡𝛾

Because 𝐰# = 𝟎 (that is, 𝐮!𝐰# = 𝟎), 
straightforward induction gives us 𝐮!𝐰" ≥ 𝑡𝛾
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• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%

Because the data 
is separable by a 
margin 𝛾



2. Claim: After t mistakes, 𝐰"
$
≤ 𝑡𝑅$

Proof (2/3)
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• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



2. Claim: After t mistakes, 𝐰"
$
≤ 𝑡𝑅$

Proof (2/3)
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• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (2/3)
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The weight is updated only 
when there is a mistake. That is 
when 𝑦%𝐰&

'𝐱% < 0.

𝐱% ≤ 𝑅, by definition of R

2. Claim: After t mistakes, 𝐰"
$
≤ 𝑡𝑅$

• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (2/3)

2. Claim: After t mistakes, 𝐰"
$
≤ 𝑡𝑅$

Because 𝐰# = 𝟎 (that is, 𝐮!𝐰# = 𝟎), 
straightforward induction gives us 𝐰"

$
≤ 𝑡𝑅$
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• Receive an input 𝐱% , 𝑦%
• if sgn 𝐰&

'𝐱% ≠ 𝑦%:
Update 𝐰&() ← 𝐰& + 𝑦%𝐱%



Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"

24



Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"
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From (2)



Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"
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From (2)

𝒖𝑻𝐰& = 𝐮 𝐰& 𝑐𝑜𝑠 angle	between	them

But 𝐮 = 1 and cosine is less than 1

So 𝐮'𝐰& ≤ 𝐰&



𝒖𝑻𝐰& = 𝐮 𝐰& 𝑐𝑜𝑠 angle	between	them

But 𝐮 = 1 and cosine is less than 1

So 𝐮'𝐰& ≤ 𝐰&  

(alternatively, using the Cauchy-Schwarz inequality)

Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"
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From (2)



Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"
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From (2) From (1)

𝒖𝑻𝐰& = 𝐮 𝐰& 𝑐𝑜𝑠 angle	between	them

But 𝐮 = 1 and cosine is less than 1

So 𝐮'𝐰& ≤ 𝐰&  

(alternatively, using the Cauchy-Schwarz inequality)



Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"
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Number of mistakes



Proof (3/3)

What we know:
1. After t mistakes, 𝐮&𝐰6 ≥ 𝑡𝛾

2. After t mistakes, 𝐰6
"
≤ 𝑡𝑅"
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Bounds the total number of mistakes!

Number of mistakes



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ be a sequence of training examples such 
that every feature vector 𝐱# ∈ ℜ$ with 𝐱# ≤ 𝑅 and the label 
𝑦# ∈ {−1, 1}. 

Suppose there is a unit vector 𝐮 ∈ ℜ$ (i.e., 𝐮 = 1) such that 
for some positive number 𝛾 ∈ ℜ, 𝛾 > 0, we have 𝑦#𝐮&𝐱# ≥ 𝛾 for 
every example (𝐱#, 𝑦#).

Then, the perceptron algorithm will make no more than  
⁄𝑅" 𝛾" mistakes on the training sequence.
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The Perceptron Mistake bound

• 𝑅 is a property of the dimensionality. How?
– For Boolean functions with 𝑛 attributes, show that 𝑅# = 𝑛.

• 𝛾 is a property of the data

• Exercises: 
– How many mistakes will the Perceptron algorithm make for disjunctions 

with 𝑛 attributes?
• What are 𝑅 and 𝛾?

– How many mistakes will the Perceptron algorithm make for 𝑘-disjunctions 
with 𝑛 attributes?

– Find a sequence of examples that will force the Perceptron algorithm to 
make 𝑂 𝑛 mistakes for a concept that is a 𝑘-disjunction.
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Number of mistakes



Beyond the separable case

• Good news
– Perceptron makes no assumption about data distribution, 

could be even adversarial
– After a fixed number of mistakes, you are done. Don’t even 

need to see any more data

• Bad news: Real world is not linearly separable
– Can’t expect to never make mistakes again
– What can we do: more features, try to be linearly 

separable if you can, use averaging

33



What you need to know

• What is the perceptron mistake bound?

• How to prove it
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Summary: Perceptron

• Online learning algorithm, very widely used, easy to implement

• Additive updates to weights

• Geometric interpretation

• Mistake bound

• Practical variants abound

• You should be able to implement the Perceptron algorithm and its 
variants, and also prove the mistake bound theorem
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