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Where are we?

 The Perceptron Algorithm
* Variants of Perceptron

e Perceptron Mistake Bound



Convergence

Convergence theorem

— If there exist a set of weights that are consistent with the
data (i.e. the data is linearly separable), the perceptron
algorithm will converge.



Convergence

Convergence theorem

— If there exist a set of weights that are consistent with the
data (i.e. the data is linearly separable), the perceptron
algorithm will converge.

Cycling theorem

— If the training data is not linearly separable, then the
learning algorithm will eventually repeat the same set of
weights and enter an infinite loop



Perceptron Learnability

* Obviously Perceptron cannot learn what it cannot represent
— Only linearly separable functions

* Minsky and Papert (1969) wrote an influential book
demonstrating Perceptron’s representational limitations

— Parity functions can’t be learned (XOR)
* We have already seen that XOR is not linearly separable

— Invision, if patterns are represented with local features, can’t
represent symmetry, connectivity



Margin

The margin of a hyperplane for a dataset is the distance between
the hyperplane and the data point nearest to it.
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Margin

The margin of a hyperplane for a dataset is the distance between
the hyperplane and the data point nearest to it.

The margin of a data set (y) is the maximum margin possible for
that dataset using any weight vector.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥>), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||Xi|| < R and the label

yi €{—1,1}.



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥5), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||xl-|| < R and the label
y; € {—1,1}.

We can always find such an R. Just look for
the farthest data point from the origin.




Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥>), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||xl-|| < R and the label

y; € {—1,1}

Suppose there is a unit vector u € R™ (i.e., |u|| = 1) such that
for some positive numbery € R,y > 0, we have y;u’x; > y for
every example (X;, y;).
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥>), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||xl-|| < R and the label

yi €{—1,1}.

Suppose there is a unit vector u € R™ (i.e., |u|| = 1) such that
for some positive numbery € R,y > 0, we have y;u’x; = y for
every example (X;, y;).

The data has a margin y.

Importantly, the data is separable.

y is the complexity parameter that defines
the separability of data. 11




Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥>), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||xl-|| < R and the label

y; € {—1,1}

Suppose there is a unit vector u € R™ (i.e., |u|| = 1) such that
for some positive numbery € R,y > 0, we have y;u’x; > y for
every example (X;, y;).

Then, the perceptron algorithm will make no more than
R?/y? mistakes on the training sequence.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥>), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||xl-|| < R and the label

yi €{—1,1}.

Suppose there is a unit vector u € R™ (i.e., |u|| = 1) such that
for some positive numbery € R,y > 0, we have y;u’x; > y for
every example (X;, y;).

Then, the perceptron algorithm will make no more than
R?/y? mistakes on the [training sequence.

If u hadn’t been a unit vector, then we could scale it in the mistake

2
bound. This will change the final mistake bound to (%) : 13



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, V5), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||Xi|| < R and the label
y;i €{—1,1}.

Suppose we have a binary classification dataset with n dimensional inputs.

Suppose there is a unit vector u € R" (i.e., |u|| = 1) such that
for some positive numbery € R,y > 0, we have y;u’x; > y for
every example (X;, ¥;).

If the data is separable,...

Then, the perceptron algorithm will make no more than

R?/y? mistakes on the training sequence.

...then the Perceptron algorithm will find a separating

hyperplane after making a finite number of mistakes
14



e Receive an input (X;, ¥;)
o if sgn(w{ x;) # y;:

Proof (preliminaries) AT

The setting
* Initial weight vector w is all zeros

* Learningrate=1
— Effectively scales inputs, but does not change the behavior

e All training examples are contained in a ball of size R.
— That is, for every example (X;, y;), we have
||Xi|| <R

* The training data is separable by margin y using a unit vector u.
— That is, for every example (X;, y;), we have
yiu'x; 2y

15



e Receive an input (X;, ¥;)

o if sgn(w/x;) # y;:
Proof (1/3) ot s

1. Claim: After t mistakes, u’w, > ty
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e Receive an input (X;, ¥;)

o if sgn(w/x;) # y;:
Proof (1/3) ot s

1. Claim: After t mistakes, u’w, > ty

T T T
U Wiy = W Wi+ YU X
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e Receive an input (X;, ¥;)

o if sgn(w/x;) # y;:
Proof (1/3) ot s

1. Claim: After t mistakes, u’w, > ty

T T T
U Wi u w; +y;u” X,

Because the data
is separable by a
margin y

Vv

uth + 7y
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Proof (1/3)

1. Claim: After t mistakes, u’w, > ty

T
U Wi

Vv

Receive an input (X;, ;)
if sgn(w{ x;) # y;:
Update w;,; < w; + y;X;

T T
u w4 yun X

uth + 7y

Because the data
is separable by a
margin y

Because wy, = 0 (thatis, u’wy, = 0),
straightforward induction gives us u’w, > ty
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e Receive an input (X;, ¥;)

o if sgn(w/x;) # y;:
Proof (2/3) ot s

2
2. Claim: After t mistakes, |Wt” < tR*
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* Receive an input (X;, y;)
o if sgn(wlx;) # y;:
PI‘OOf (2/3) Update w;, 1 < W; + y;X;
2
2. Claim: After t mistakes, |Wt” < tR*

||Wt+1H2 = Wt+yz'xz'”2

= [l well® + 2ys (Wi %) + [|xs]7
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Proof (2/3)

Receive an input (X;, ;)
if sgn(w{ x;) # y;:
Update w;,; < w; + y;X;

2. Claim: After t mistakes, |Wt”2 < tR*
Iwerall® = [lwe +yixil”
2 2
= [lwel|” + 2ua(w xa) + ]|

The weight is updated only
when there is a mistake. That is
when y,w/x; < 0.

||xl-|| < R, by definition of R
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Proof (2/3)

2. Claim: After t mistakes,

2
Wit

<

e Receive an input (X;, ¥;)
o if sgn(w{ x;) # y;:

Update w;,; <« w; + y;X;

2
lw,||” < tR?

W +yixi”2

Wi

Wy

2

2

2y; (W

- R?

T
t Xi

)

2
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Because wy, = 0 (thatis, u’wy, = 0),

2
straightforward induction gives us Hwtl‘ < tR*
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Proof (3/3)

What we know:

1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?
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Proof (3/3)

What we know:

1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?

RVt > ||wi|

From (2)

25



Proof (3/3)

What we know:

1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?

RVt > [|[w]| > u’'wy

From (2)
y
ulw, = ||u| | | |wt||cos(angle between them)
But ||u|| = 1 and cosine is less than 1

Soulw, < ||w|
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Proof (3/3)

What we know:

1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?

RVt > [|[w]| > u’'wy

From (2)

ulw, = ||u| | | |wt||cos(angle between them)
But ||u|| = 1 and cosine is less than 1

Sou'w; < ||lw|

(alternatively, using the Cauchy-Schwarz inequality)
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Proof (3/3)

What we know:

1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?

RVt > ||we| > u'wy > ty

From (2) From (1)
ulw, = ||u| | | |wt||cos(angle between them)
But ||u|| = 1 and cosine is less than 1

Sou'w; < ||lw|

(alternatively, using the Cauchy-Schwarz inequality)




Proof (3/3)

What we know:

1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?

RVt > ||we|| > u”wy =ty

2
Number of mistakes { < —

,72
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Proof (3/3)

What we know:
1. After t mistakes, u’ w, > ty

2
2. After t mistakes, ||wt|| < tR?

> ||we|| > ul'wy

R2
Number of mistakes { < —

72

Bounds the total number of mistakes!
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let (X1,V1), (X5, ¥>), -+ be a sequence of training examples such
that every feature vector x; € R™ with ||xl-|| < R and the label

y; € {—1,1}

Suppose there is a unit vector u € R™ (i.e., |u|| = 1) such that
for some positive numbery € R,y > 0, we have y;u’x; > y for
every example (X;, y;).

Then, the perceptron algorithm will make no more than
R?/y? mistakes on the training sequence.
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The Perceptron Mistake bound .
Number of mistakes < —
/y
* R is a property of the dimensionality. How?
— For Boolean functions with n attributes, show that R? = n.

e Yy isaproperty of the data

e Exercises:

— How many mistakes will the Perceptron algorithm make for disjunctions
with n attributes?
e Whatare R and y?
— How many mistakes will the Perceptron algorithm make for k-disjunctions
with n attributes?

— Find a sequence of examples that will force the Perceptron algorithm to
make O (n) mistakes for a concept that is a k-disjunction.
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Beyond the separable case

e Good news

— Perceptron makes no assumption about data distribution,
could be even adversarial

— After a fixed number of mistakes, you are done. Don’t even
need to see any more data

* Bad news: Real world is not linearly separable
— Can’t expect to never make mistakes again

— What can we do: more features, try to be linearly
separable if you can, use averaging
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What you need to know

 What is the perceptron mistake bound?

* How to prove it
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Summary: Perceptron

* Online learning algorithm, very widely used, easy to implement
e Additive updates to weights

* Geometric interpretation

 Mistake bound

 Practical variants abound

* You should be able to implement the Perceptron algorithm and its
variants, and also prove the mistake bound theorem
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