Practical Advice for Building Machine Learning Applications

Machine Learning

Based on lectures and papers by Andrew Ng, Pedro Domingos, Tom Mitchell and others
This lecture: ML and the world

Making ML work in the world

Mostly experiential advice
Also based on what other people have said
See readings on class website

• Diagnostics of your learning algorithm

• Error analysis

• Injecting machine learning into Your Favorite Task

• Making machine learning matter
ML and the world

- Diagnostics of your learning algorithm
- Error analysis
- Injecting machine learning into Your Favorite Task
- Making machine learning matter
Debugging machine learning

Suppose you train an SVM or a logistic regression classifier for spam detection.

You *obviously* follow best practices for finding hyper-parameters (such as cross-validation).

Your classifier is only 75% accurate.

What can you do to improve it?

(assuming that there are no bugs in the code)
Different ways to improve your model

More training data

Features
1. Use more features
2. Use fewer features
3. Use other features

Better training
1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization
Different ways to improve your model

More training data

Features
1. Use more features
2. Use fewer features
3. Use other features

Better training
1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization

Tedious!
And prone to errors, dependence on luck
Let us try to make this process more methodical
First, diagnostics

Some possible problems:

1. Over-fitting (high variance)
2. Under-fitting (high bias)
3. Your learning does not converge
4. Are you measuring the right thing?
Detecting over or under fitting

Over-fitting: The training accuracy is much higher than the test accuracy
- The model explains the training set very well, but poor generalization

Under-fitting: Both accuracies are unacceptably low
- The model can not represent the concept well enough
Detecting high variance using learning curves

![Graph showing detection of variance](image)
Detecting high variance using learning curves

Error

Size of training data

Generalization error/ test error

Training error
Detecting high variance using learning curves

Test error keeps decreasing as training set increases ⇒ more data will help

Large gap between train and test error

Typically seen for more complex models
Detecting high bias using learning curves

Both train and test error are unacceptable
(But the model seems to converge)

Typically seen for more simple models

Training error

Generalization error/ test error

Size of training set

Error
Different ways to improve your model

More training data

Features
1. Use more features
2. Use fewer features
3. Use other features

Better training
1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization
Different ways to improve your model

More training data
- Helps with over-fitting

Features
1. Use more features Helps with under-fitting
2. Use fewer features Helps with over-fitting
3. Use other features Could help with over-fitting and under-fitting

Better training
1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization Could help with over-fitting and under-fitting
Diagnostics

Some possible problems:

✓ Over-fitting (high variance)

✓ Under-fitting (high bias)

3. Your learning does not converge

4. Are you measuring the right thing?
Does your learning algorithm converge?

If learning is framed as an optimization problem, track the objective
Does your learning algorithm converge?

If learning is framed as an optimization problem, track the objective.

- Not yet converged here
- Not always easy to decide
- How about here?
Does your learning algorithm converge?

If learning is framed as an optimization problem, track the objective.

Something is wrong
Does your learning algorithm converge?

If learning is framed as an optimization problem, track the objective.

Helps to debug

If we are doing gradient descent on a convex function, the objective can't increase.

(Caveat: For SGD, the objective will slightly increase occasionally, but not by much)

Something is wrong
Different ways to improve your model

More training data

Features

1. Use more features Helps with under-fitting
2. Use fewer features Helps with over-fitting
3. Use other features Could help with over-fitting and under-fitting

Better training

1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization Could help with over-fitting and under-fitting
Different ways to improve your model

More training data

- Helps with overfitting

Features

1. Use more features
2. Use fewer features
3. Use other features

Better training

1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization

Track the objective for convergence

Could help with over-fitting and under-fitting
Diagnostics

Some possible problems:

✓ Over-fitting (high variance)

✓ Under-fitting (high bias)

✓ Your learning does not converge

4. Are you measuring the right thing?
What to measure

• Accuracy of prediction is the most common measurement

• But if your data set is unbalanced, accuracy may be misleading
 – 1000 positive examples, 1 negative example
 – A classifier that always predicts positive will get 99.9% accuracy. Has it really learned anything?

• Unbalanced labels \(\rightarrow\) measure label specific precision, recall and F-measure
 – Precision for a label: Among examples that are predicted with label, what fraction are correct
 – Recall for a label: Among the examples with given ground truth label, what fraction are correct
 – F-measure: Harmonic mean of precision and recall
ML and the world

- Diagnostics of your learning algorithm
- Error analysis
- Injecting machine learning into Your Favorite Task
- Making machine learning matter
Machine Learning in this class

ML code
Machine Learning in context

Figure from [Sculley, et al NIPS 2015]
Error Analysis

Generally machine learning plays a small role in a larger application

• Pre-processing
• Feature extraction (possibly by other ML based methods)
• Data transformations

How much do each of these contribute to the error?

Error analysis tries to explain why a system is not performing perfectly
Example: A typical text processing pipeline
Example: A typical text processing pipeline
Example: A typical text processing pipeline

Text

Words
Example: A typical text processing pipeline
Example: A typical text processing pipeline

Text → Words → Parts-of-speech → Parse trees
Example: A typical text processing pipeline

- Text
- Words
- Parts-of-speech
- Parse trees
- A ML-based application
Example: A typical text processing pipeline

Each of these could be ML driven

Or deterministic

But still error prone

Text → Words → Parts-of-speech → Parse trees → A ML-based application
Example: A typical text processing pipeline

Each of these could be ML driven

Or deterministic

But still error prone

How much do each of these contribute to the error of the final application?
Tracking errors in a complex system

Plug in the ground truth for the intermediate components and see how much the accuracy of the final system changes

<table>
<thead>
<tr>
<th>System</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-to-end predicted</td>
<td>55%</td>
</tr>
<tr>
<td>With ground truth words</td>
<td>60%</td>
</tr>
<tr>
<td>+ ground truth parts-of-speech</td>
<td>84%</td>
</tr>
<tr>
<td>+ ground truth parse trees</td>
<td>89%</td>
</tr>
<tr>
<td>+ ground truth final output</td>
<td>100%</td>
</tr>
</tbody>
</table>
Tracking errors in a complex system

Plug in the ground truth for the intermediate components and see how much the accuracy of the final system changes.

<table>
<thead>
<tr>
<th>System</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-to-end predicted</td>
<td>55%</td>
</tr>
<tr>
<td>With ground truth words</td>
<td>60%</td>
</tr>
<tr>
<td>+ ground truth parts-of-speech</td>
<td>84%</td>
</tr>
<tr>
<td>+ ground truth parse trees</td>
<td>89%</td>
</tr>
<tr>
<td>+ ground truth final output</td>
<td>100%</td>
</tr>
</tbody>
</table>

Error in the part-of-speech component hurts the most.
Ablative study

Explaining difference between the performance between a strong model and a much weaker one (a baseline)

Usually seen with features

Suppose we have a collection of features and our system does well, but we don’t know which features are giving us the performance

Evaluate simpler systems that progressively use fewer and fewer features to see which features give the highest boost

It is not enough to have a classifier that works; it is useful to know why it works.

Helps interpret predictions, diagnose errors and can provide an audit trail
ML and the world

• Diagnostics of your learning algorithm

• Error analysis

• Injecting machine learning into Your Favorite Task

• Making machine learning matter
Classifying fish

Say you want to build a classifier that identifies whether a real physical fish is salmon or tuna.

How do you go about this?
Classifying fish

Say you want to build a classifier that identifies whether a real physical fish is salmon or tuna

How do you go about this?

The slow approach

1. Carefully identify features, get the best data, the software architecture, maybe design a new learning algorithm
2. Implement it and hope it works

Advantage: Perhaps a better approach, maybe even a new learning algorithm. Research.
Classifying fish

Say you want to build a classifier that identifies whether a real physical fish is salmon or tuna

How do you go about this?

The slow approach

1. Carefully identify features, get the best data, the software architecture, maybe design a new learning algorithm
2. Implement it and hope it works

Advantage: Perhaps a better approach, maybe even a new learning algorithm. Research.

The hacker’s approach

1. First implement something
2. Use diagnostics to iteratively make it better

Advantage: Faster release, will have a solution for your problem quicker
Classifying fish

Say you want to build a classifier that identifies whether a real physical fish is salmon or tuna.

How do you go about this?

The slow approach

1. Carefully identify features, get the best data, design software architecture, maybe design a new learning algorithm.
2. Implement it and hope it works.

Advantage: Perhaps a better approach, maybe even a new learning algorithm. Research.

The hacker’s approach

1. First implement something.
2. Use diagnostics to iteratively make it better.

Advantage: Faster release, will have a solution for your problem quicker.

Be wary of premature optimization.

Be equally wary of prematurely committing to a bad path.
What to watch out for

• Do you have the right evaluation metric?
 – And does your loss function reflect it?

• Beware of contamination: Ensure that your training data is not contaminated with the test set
 – Learning = generalization to new examples
 – Do not see your test set either. You may inadvertently contaminate the model
 – Beware of contaminating your features with the label!
 – (Be suspicious of perfect predictors)
What to watch out for

• **Be aware of bias vs. variance tradeoff** (or over-fitting vs. under-fitting)

• **Be aware that intuitions may not work in high dimensions**
 – No proof by picture
 – Curse of dimensionality

• **A theoretical guarantee may only be theoretical**
 – May make invalid assumptions (eg: if the data is separable)
 – May only be legitimate with infinite data (eg: estimating probabilities)
 – Experiments on real data are equally important
Big data is not enough

But more data is always better
 – Cleaner data is even better

Remember that learning is impossible without some bias that simplifies the search
 – Otherwise, no generalization

Learning requires knowledge to guide the learner
 – Machine learning is not a magic wand
What knowledge?

• Which model is the right one for this task?
 – Linear models, decision trees, deep neural networks, etc

• Which learning algorithm?
 – Does the data violate any crucial assumptions that were used to define the learning algorithm or the model?
 – Does that matter?

• Feature engineering is crucial

• Implicitly, these are all claims about the nature of the problem
Miscellaneous advice

• Learn simpler models first
 – If nothing, at least they form a baseline that you can improve upon

• Ensembles seem to work better

• Think about whether your problem is learnable at all
 – Learning = generalization
ML and the world

- Diagnostics of your learning algorithm
- Error analysis
- Injecting machine learning into Your Favorite Task
- Making machine learning matter
Making machine learning matter

Challenges to the greater ML community

1. A law passed or legal decision made that relies on the result of an ML analysis

2. $100M saved through improved decision making provided by an ML system

3. A conflict between nations averted through high quality translation provided by an ML system

4. A 50% reduction in cybersecurity break-ins through ML defenses

5. A human life saved through a diagnosis or intervention recommended by an ML system

6. Improvement of 10% in one country’s Human Development Index attributable to an ML system
ML and system building

Several recent papers about how ML fits in the context of large software systems

Machine Learning: The High-Interest Credit Card of Technical Debt

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young
{dsculley, gholt, dgg, edavydov}@google.com
{toddphillips, ebner, vchaudhary, myoung}@google.com
Google, Inc.

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley, gholt, dgg, edavydov, toddphillips}@google.com
Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison
{ebner, vchaudhary, myoung, jfcrespo, dennison}@google.com
Google, Inc.
Data-driven decision making: Increasingly prevalent

Algorithms are no longer just about showing proof-of-concept learning

Some broader concerns about algorithmic decision-making emerge:
• Do classifiers exhibit biases?
• How do we ensure that such systems are transparent in their decision-making?
• When can you believe your model? Should you leave decision making to it?
• What if statistical models are used in ethically dubious ways?

These refer to auxiliary criteria that need not directly tied to the loss that we minimize
Biased classifiers

What if classifiers are used to decide...
 - ... how long someone should be sentenced for a crime?
 - ... or whether someone’s loan application should be approved?
 - ... or whether someone should be fired?

Questions:
• How can we ensure that the classifiers do not exhibit illegal or unethical biases?
 - i.e. the classifiers are fair?

• How do we design algorithms and evaluation frameworks which avoid discrimination?

• What if the data itself (either knowingly or unknowingly) is unfair?
The right to explanations

Imagine you have a job and a classifier decides to fire you.
 – Maybe because it made an error on this instance (ie. you!)

Questions:
• How do we develop statistical methods that not only make a prediction, but are also transparent in their decision making process?

• How do we develop algorithms that can explain their decisions?
Are current legal systems robust?

Perhaps there is room to rewrite/update laws to account for machine learning

• What if evidence is faked by a sampling from a generative model?

• Who is to blame if a ML-based automatic car is involved in an accident?

• What if an ML-based autonomous weapon decides to kill someone without any human intervention?
Fairness, Accountability and Transparency

• We need to ensure that
 – Our algorithms are *Fair*
 – Our algorithms can be held *Accountable*
 – Our algorithms exhibit *Transparency*

• These are all difficult to formalize
 – But still important

• And it is important to keep these concerns when we
 – Define a task
 – Collect data
 – Define evaluations
 – Design features, models
 – ... really at every step along the way
A retrospective look at the course
Learning = generalization

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

Tom Mitchell (1999)
We saw different “models”

Or: what kind of a function should a learner learn

- Linear classifiers
- Decision trees
- Non-linear classifiers, feature transformations, neural networks
- Ensembles of classifiers
Different learning protocols

• **Supervised learning**
 – A *teacher* supplies a collection of examples with labels
 – The *learner* has to learn to label new examples using this data

• **We did not see**
 – Unsupervised learning
 • No *teacher, learner* has only unlabeled examples
 • Data mining

 – Semi-supervised learning
 • *Learner* has access to both labeled and unlabeled examples
Learning algorithms

- **Online algorithms**: Learner can access only one labeled at a time
 - Perceptron

- **Batch algorithms**: Learner can access to the entire dataset
 - Naïve Bayes
 - Support vector machines, logistic regression
 - Decision trees and nearest neighbors
 - Boosting
 - Neural networks
Representing data

What is the best way to represent data for a particular task?

• Features

• Dimensionality reduction (we didn’t cover this, but do look at the material if you are interested)
The theory of machine learning

Mathematically defining learning

- Online learning
- Probably Approximately Correct (PAC) Learning
- Bayesian learning
The three components of learning algorithms.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Evaluation</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-nearest neighbor</td>
<td>Accuracy/Error rate</td>
<td>Combinatorial optimization</td>
</tr>
<tr>
<td>Support vector machines</td>
<td>Precision and recall</td>
<td>Greedy search</td>
</tr>
<tr>
<td>Hyperplanes</td>
<td>Squared error</td>
<td>Beam search</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>Likelihood</td>
<td>Branch-and-bound</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>Posterior probability</td>
<td>Continuous optimization</td>
</tr>
<tr>
<td>Decision trees</td>
<td>Information gain</td>
<td>Unconstrained</td>
</tr>
<tr>
<td>Sets of rules</td>
<td>K-L divergence</td>
<td>Gradient descent</td>
</tr>
<tr>
<td>Propositional rules</td>
<td>Cost/Utility</td>
<td>Conjugate gradient</td>
</tr>
<tr>
<td>Logic programs</td>
<td>Margin</td>
<td>Quasi-Newton methods</td>
</tr>
<tr>
<td>Neural networks</td>
<td></td>
<td>Constrained</td>
</tr>
<tr>
<td>Graphical models</td>
<td></td>
<td>Linear programming</td>
</tr>
<tr>
<td>Bayesian networks</td>
<td></td>
<td>Quadratic programming</td>
</tr>
<tr>
<td>Conditional random fields</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table from [Domingos, 2012]
Machine learning is *too* easy!

- Remarkably diverse collection of ideas

- Yet, in practice many of these approaches work roughly equally well
 - Eg: SVM vs logistic regression vs averaged perceptron
What we did not see

Machine learning is a large and growing area of scientific study
We did not cover
• Kernel methods
• Unsupervised learning, clustering
• Hidden Markov models
• Multiclass support vector machines
• Topic models
• Structured models
•

But we saw the foundations of how to think about machine learning
What we did not see

Machine learning is a large and growing area of scientific study
We did not cover

- Kernel methods
- Unsupervised learning, clustering
- Hidden Markov models
- Multiclass support vector machines
- Topic models
- ...

Several classes that can follow (or are related to) this course:

- Data Mining
- Clustering
- Theory of Machine Learning
- Various applications (NLP, vision,...)
- Data visualization
- Specializations: Deep learning, Structured Prediction, etc
This course

Focus on the underlying concepts and algorithmic ideas in the field of machine learning

Not about

• Using a specific machine learning tool
• Any single learning paradigm
What we saw

1. A broad theoretical and practical understanding of machine learning paradigms and algorithms

2. Ability to implement learning algorithms

3. Identify where machine learning can be applied and make the most appropriate decisions (about algorithms, models, supervision, etc)