
Machine Learning

How good is a learning algorithm?
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Quantifying Performance

• How can we rigorously quantify the performance of 
our learning algorithm?

• One approach: Compute how many examples should 
the learning algorithm see before we can say that 
our learned hypothesis is good (or good enough)
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This number will depend on the learning protocol



Example: Learning Conjunctions

There is a hidden (monotone) conjunction for the learner 
(you) to learn 

How many examples are needed to learn it?  How does 
learning proceed?

– Protocol I:  The learner proposes instances as queries to the 
teacher

– Protocol II:  The teacher (who knows f) provides training 
examples 

– Protocol III: Some random source (e.g., Nature) provides 
training examples; the Teacher (Nature) provides the labels (f(x))
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There are 100 Boolean variables. 
But you don’t know that only these 
five are relevant
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There are 100 Boolean variables. 
But you don’t know that only these 
five are relevant

Let us compare these protocols.

Active 
learning

Teaching



Learning Conjunctions

Since we know we are after a monotone conjunction:
– Is x100 in?   <(1,1,1…,1,0), ?>   f(x)=0 (conclusion: Yes, x100 is in f)
– Is x99 in?   <(1,1,…1,0,1), ?>  f(x)=1 (conclusion: No, x99 is not in f)
– …
– Is x2 in ?  <(1,0,…1,1,1), ?>   f(x)=0 (conclusion: Yes, x2 is in f)
– Is x1 in ?  <(0,1,…1,1,1), ?>   f(x)=1 (conclusion: No, x1 is not in f)

A straight forward algorithm requires n=100 queries, 
and will produce the hidden conjunction (exactly)
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What happens here if the conjunction is not known to be monotone?
If we know of a positive example, the same algorithm works. 

Protocol I:  The learner proposes instances as queries to the teacher

If the learner can choose the queries wisely, then 
each query will force the teacher to reveal new 

information about the hidden function
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Note: 
0 = False
1 = True



Learning Conjunctions

Since we know we are after a monotone conjunction:
– Learner asks: What is the label for (1,1,1…,1,0)? 

Teacher’s answer: 𝑓(𝑥) = 0
Learner’s conclusion: Yes, 𝑥100 is in 𝑓

– Is x99 in?   <(1,1,…1,0,1), ?>  f(x)=1 (conclusion: No, x99 is not in f)
– …
– Is x2 in ?  <(1,0,…1,1,1), ?>   f(x)=0 (conclusion: Yes, x2 is in f)
– Is x1 in ?  <(0,1,…1,1,1), ?>   f(x)=1 (conclusion: No, x1 is not in f)

A straight forward algorithm requires n=100 queries, 
and will produce the hidden conjunction (exactly)

11

What happens here if the conjunction is not known to be monotone?
If we know of a positive example, the same algorithm works. 

Protocol I:  The learner proposes instances as queries to the teacher

Why? To learn whether 𝑥100  is in the true function, the learner can look 
at the label assigned to this specific instance 

1. If the label is false, setting 𝑥100 to 0 makes the output 0. That is, 𝑥100  
is part of the conjunction

2. If the label is true, setting 𝑥100 to 0 does not make the output 0. That 
is, 𝑥100 is not needed in the conjunction
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What happens here if the conjunction is not known to be monotone?
If we know of a positive example, a similar algorithm works.
Exercise: Verify this 

Protocol I:  The learner proposes instances as queries to the teacher



Learning Conjunctions
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Protocol II:  The teacher (who knows f) provides training examples



Learning Conjunctions

• First: Teacher gives a superset of the good variables
– 𝑓 0,1,1,1,1,0, … , 0,1 = 1
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Protocol II:  The teacher (who knows f) provides training examples



Learning Conjunctions

• First: Teacher gives a superset of the good variables
– 𝑓 0,1,1,1,1,0, … , 0,1 = 1

• Next: Teacher proves that each of these variables are 
required 
– 𝑓(0,0,1,1,1,0, … , 0,1) = 0 Conclusion: need x2
– 𝑓 0,1,0,1,1,0, … , 0,1 = 0 Conclusion: need x3
– 𝑓(0,1,1,0,1,0, … , 0,1) = 0 Conclusion: need x4
– 𝑓 0,1,1,1,0,0, … , 0,1 = 0 Conclusion: need x5
– 𝑓 0,1,1,1,1,0, … , 0,0 = 0 Conclusion: need x100
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Protocol II:  The teacher (who knows f) provides training examples

These variables 
are sufficient

All the variables 
are necessary
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Protocol II:  The teacher (who knows f) provides training examples

A straight forward algorithm requires k = 6 examples to 
produce the hidden conjunction (exactly)
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Protocol II:  The teacher (who knows f) provides training examples

A straight forward algorithm requires k = 6 examples to 
produce the hidden conjunction (exactly)

Modeling 
teaching can be 

very difficult, 
unfortunately



Learning Conjunctions

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>
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Protocol III:  Some random source (nature) provides training examples

Notation: <example, label>
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Protocol III:  Some random source (nature) provides training examples

Look for the variables that are present 
in every positive example.

All other variables can be eliminated

Why?
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Protocol III:  Some random source (nature) provides training examples

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be
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Protocol III:  Some random source (nature) provides training examples

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be
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Protocol III:  Some random source (nature) provides training examples

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be

With the given data, we only learned an 
approximation to the true concept. 

Is it good enough?



Two Directions

• Can analyze the probabilistic intuition
– Never saw x1=0 in positive examples, maybe we’ll never see it
– And if we do, it will be with small probability, so the concepts we learn 

may be pretty good
• Pretty good: In terms of performance on future data

– PAC framework

• Mistake Driven Learning algorithms
– Update your hypothesis only when you make mistakes
– Define good in terms of how many mistakes you make before you stop 

29
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