How good is a learning algorithm?

Machine Learning

Quantifying Performance

- How can we rigorously quantify the performance of our learning algorithm?
- **One approach**: Compute how many examples should the learning algorithm see before we can say that our learned hypothesis is *good* (or *good enough*)

This number will depend on the learning protocol

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active - **Protocol I**: The learner proposes instances as queries to the teacher learning

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active - **Protocol I**: The learner proposes instances as queries to the teacher learning

Teaching - **Protocol II**: The teacher (who knows f) provides training examples

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active - **Protocol I**: The learner proposes instances as queries to the teacher learning

- Teaching **Protocol II**: The teacher (who knows f) provides training examples
	- *Protocol III*: Some random source (e.g. Nature) provides training examples; the Teacher (Nature) provides the labels (f(x))

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active - **Protocol I**: The learner proposes instances as queries to the teacher learning

- Teaching **Protocol II**: The teacher (who knows f) provides training examples
	- *Protocol III*: Some random source (e.g. Nature) provides training examples; the Teacher (Nature) provides the labels (f(x))

Let us compare these protocols.

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

 $\frac{1}{\sqrt{2}}$ is a monotone conjunction: a monotone conjunction: a monotone conjunction: $\frac{1}{\sqrt{2}}$ each query will force the teacher to reveal new information about the hidden function **the intervalsion** If the learner can choose the queries wisely, then

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

– Learner asks: What is the label for (1,1,1…,1,0)?

Teacher's answer: $f(x) = 0$

Learner's conclusion: Yes, x_{100} is in f

Note: $0 = False$ 1 = True

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

 $-$ Learner asks: What is the label for $(1,1,1...$, $1,0)$?

```
Teacher's answer: f(x) = 0
```

```
Learner's conclusion: Yes, x_{100} is in f
```
 \mathbf{v} at the label assigned to this specific instance Why? To learn whether x_{100} is in the true function, the learner can look

 $\mathcal{L}=\mathcal{L}$

- $\frac{1}{2}$. If the fabel is faise, setting x_{100} to 0 makes the butput 0. That is, x_{100} is part of the conjunction 1. If the label is false, setting x_{100} to 0 makes the output 0. That is, x_{100} is part of the conjunction
- and will produce the hidden conjunction of the hidden continue that the hidden continue of α is, x_{100} is not needed in the conjunction 2. If the label is true, setting x_{100} to 0 does not make the output 0. That

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for $(1,1,1...,1,0)$? $f(x) = 0$ (conclusion: x_{100} is in f)
- What is the label for $(1,1,...1,0,1)$? $f(x) = 1$ (conclusion: x_{99} is not in f)

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for $(1,1,1...,1,0)$? $f(x) = 0$ (conclusion: x_{100} is in f)
- What is the label for $(1,1,...1,0,1)$? $f(x) = 1$ (conclusion: x_{99} is not in f)
- …

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for $(1,1,1...,1,0)$? $f(x) = 0$ (conclusion: x_{100} is in f)
- What is the label for $(1,1,...1,0,1)$? $f(x) = 1$ (conclusion: x_{99} is not in f)
- …
- What is the label for $(1,0,...1,1,1)$? $f(x) = 0$ (conclusion: x_2 is in f)

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for $(1,1,1...,1,0)$? $f(x) = 0$ (conclusion: x_{100} is in f)
- What is the label for $(1,1,...1,0,1)$? $f(x) = 1$ (conclusion: x_{99} is not in f)
- …
- What is the label for $(1,0,...1,1,1)$? $f(x) = 0$ (conclusion: x_2 is in f)
- What is the label for $(0,1,...1,1,1)$? $f(x) = 1$ (conclusion: x_1 is not in f)

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for $(1,1,1...,1,0)$? $f(x) = 0$ (conclusion: x_{100} is in f)
- What is the label for $(1,1,...1,0,1)$? $f(x) = 1$ (conclusion: x_{99} is not in f)
- …
- What is the label for $(1,0,...1,1,1)$? $f(x) = 0$ (conclusion: x_2 is in f)
- What is the label for $(0,1,...1,1,1)$? $f(x) = 1$ (conclusion: x_1 is not in f)

A straight forward algorithm requires $n = 100$ queries, and will produce the hidden conjunction (exactly)

$$
h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}
$$

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for $(1,1,1...,1,0)$? $f(x) = 0$ (conclusion: x_{100} is in f)
- What is the label for $(1,1,...1,0,1)$? $f(x) = 1$ (conclusion: x_{99} is not in f)
- …
- What is the label for $(1,0,...1,1,1)$? $f(x) = 0$ (conclusion: x_2 is in f)
- What is the label for $(0,1,...1,1,1)$? $f(x) = 1$ (conclusion: x_1 is not in f)

A straight forward algorithm requires $n = 100$ queries, and will produce the hidden conjunction (exactly)

$$
h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}
$$

What happens here if the conjunction is not known to be monotone? If we know of a positive example, a similar algorithm works. Exercise: Verify this

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables
	- $f(0,1,1,1,1,0, \ldots, 0,1) = 1$

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables $- f(0,1,1,1,1,0, \ldots, 0,1) = 1$
- Next: Teacher proves that each of these variables are required
	- $f(0,0,1,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₂
	- $f(0,1,0,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₃
	- $f(0,1,1,0,1,0, \ldots, 0,1) = 0$ Conclusion: need x_4
	- $f(0,1,1,1,0,0, \ldots, 0,1) = 0$ Conclusion: need x_5
	- $f(0,1,1,1,1,0, ..., 0,0) = 0$ Conclusion: need x_{100}

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables $- f(0,1,1,1,1,0, \ldots, 0,1) = 1$
- Next: Teacher proves that each of these variables are required
	- $f(0,0,1,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₂
	- $f(0,1,0,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₃
	- $f(0,1,1,0,1,0, \ldots, 0,1) = 0$ Conclusion: need x_4
	- $f(0,1,1,1,0,0, \ldots, 0,1) = 0$ Conclusion: need x_5
	- $f(0,1,1,1,1,0, ..., 0,0) = 0$ Conclusion: need x_{100}

All the variables are necessary

$f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$ Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables $- f(0,1,1,1,1,0, \ldots, 0,1) = 1$
- Next: Teacher proves that each of these variables are required
	- $f(0,0,1,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₂
	- $f(0,1,0,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₃
	- …
	- $f(0,1,1,1,1,0, \ldots, 0,0) = 0$ Conclusion: need x_{100}

A straight forward algorithm requires $k = 6$ examples to produce the hidden conjunction (exactly)

$$
h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}
$$

– …

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables $- f(0,1,1,1,1,0, \ldots, 0,1) = 1$
- Next: Teacher proves that each of these variables are required
	- $f(0,0,1,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₂
	- $f(0,1,0,1,1,0, \ldots, 0,1) = 0$ Conclusion: need x₃

Modeling teaching can be very difficult, unfortunately

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

 $- f(0,1,1,1,1,0, \ldots, 0,0) = 0$ Conclusion: need x_{100}

A straight forward algorithm requires $k = 6$ examples to produce the hidden conjunction (exactly)

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- $-$ <(1,1,1,1,1,1,...,1,1), 1>
- $-$ <(1,1,1,0,0,0,...,0,0), 0>
- $-$ <(1,1,1,1,1,0,...0,1,1), 1>
- $-$ <(1,0,1,1,1,0,...0,1,1), 0>
- $-$ <(1,1,1,1,1,0,...0,0,1), 1>
- $-$ <(1,0,1,0,0,0,...0,1,1), 0>
- $-$ <(1,1,1,1,1,1,...,0,1), 1>
- $-$ <(0,1,0,1,0,0,...0,1,1), 0>

Notation: <example, label>

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- $-$ <(1,1,1,1,1,1,...,1,1), 1>
- $-$ <(1,1,1,0,0,0,...,0,0), 0>
- $-$ <(1,1,1,1,1,0,...0,1,1), 1>
- $-$ <(1,0,1,1,1,0,...0,1,1), 0>
- $-$ <(1,1,1,1,1,0,...0,0,1), 1>
- $-$ <(1,0,1,0,0,0,...0,1,1), 0>
- $-$ <(1,1,1,1,1,1,...,0,1), 1>
- $-$ <(0,1,0,1,0,0,...0,1,1), 0>

Look for the variables that are present in *every* positive example.

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

All other variables can be eliminated

Why?

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- $-$ <(1,1,1,1,1,1,...,1,1), 1>
- $-$ <(1,1,1,0,0,0,...,0,0), 0>
- $-$ <(1,1,1,1,1,0,...0,1,1), 1>
- $-$ <(1,0,1,1,1,0,...0,1,1), 0>
- $-$ <(1,1,1,1,1,0,...0,0,1), 1>
- $-$ <(1,0,1,0,0,0,...0,1,1), 0>
- $-$ <(1,1,1,1,1,1,...,0,1), 1>
- $-$ <(0,1,0,1,0,0,...0,1,1), 0>

For a reasonable learning algorithm (by *elimination*), the final hypothesis will be

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

 $h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

$$
-\langle 1, 1, 1, 1, 1, 1, ..., 1, 1 \rangle, \boxed{1} \rangle
$$

\n
$$
-\langle 1, 1, 1, 0, 0, 0, ..., 0, 0 \rangle, 0 \rangle
$$

\n
$$
-\langle 1, 1, 1, 1, 0, ..., 0, 1, 1 \rangle, \boxed{1} \rangle
$$

\n
$$
-\langle 1, 0, 1, 1, 1, 0, ..., 0, 1, 1 \rangle, 0 \rangle
$$

\n
$$
-\langle 1, 1, 1, 1, 0, ..., 0, 0, 1 \rangle, \boxed{1} \rangle
$$

\n
$$
-\langle 1, 0, 1, 0, 0, 0, ..., 0, 1, 1 \rangle, 0 \rangle
$$

\n
$$
-\langle 1, 1, 1, 1, 1, ..., 0, 1 \rangle, \boxed{1} \rangle
$$

\n
$$
-\langle 0, 1, 0, 1, 0, 0, ..., 0, 1, 1 \rangle, 0 \rangle
$$

For a reasonable learning algorithm (by *elimination*), the final hypothesis will be

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

$$
h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}
$$

Whenever the output is $1, x_1$ is present

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

$$
-\langle 1, 1, 1, 1, 1, 1, ..., 1, 1 \rangle, \boxed{1}
$$
\n
$$
-\langle 1, 1, 1, 0, 0, 0, ..., 0, 0 \rangle, 0 \rangle
$$
\n
$$
-\langle 1, 1, 1, 1, 0, ..., 0, 1, 1 \rangle, \boxed{1}
$$
\n
$$
-\langle 1, 0, 1, 1, 1, 0, ..., 0, 1, 1 \rangle, 0 \rangle
$$
\n
$$
-\langle 1, 1, 1, 1, 1, 0, ..., 0, 0, 1 \rangle, \boxed{1}
$$
\n
$$
-\langle 1, 0, 1, 0, 0, 0, ..., 0, 1, 1 \rangle, 0 \rangle
$$
\n
$$
-\langle 1, 1, 1, 1, 1, 1, ..., 0, 1 \rangle, \boxed{1}
$$

 $-$ <(0,1,0,1,0,0,...0,1,1), 0>

For a reasonable learning algorithm (by *elimination*), the final hypothesis will be

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

$$
h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}
$$

Whenever the output is 1, x_1 is present

With the given data, we only learned an *approximation* to the true concept. Is it good enough?

Two Directions for How good is our learning algorithm?

- Can analyze the probabilistic intuition
	- $-$ Never saw $x_1=0$ in positive examples, maybe we'll never see it
	- And if we do, it will be with small probability, so the concepts we learn may be *pretty good*
		- *Pretty good:* In terms of performance on future data
	- *PAC framework*

Two Directions for How good is our learning algorithm?

- Can analyze the probabilistic intuition
	- $-$ Never saw $x_1=0$ in positive examples, maybe we'll never see it
	- And if we do, it will be with small probability, so the concepts we learn may be *pretty good*
		- *Pretty good:* In terms of performance on future data
	- *PAC framework*
- *Mistake Driven* Learning algorithms
	- Update your hypothesis only when you make mistakes
	- Define *good* in terms of how many mistakes you make before you stop