How good is a learning algorithm?

Machine Learning

Quantifying Performance

- How can we rigorously quantify the performance of our learning algorithm?
- One approach: Compute how many examples should the learning algorithm see before we can say that our learned hypothesis is *good* (or *good enough*)

This number will depend on the learning protocol

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active – **Protocol I**: The learner proposes instances as queries to the learning teacher

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active – **Protocol I**: The learner proposes instances as queries to the learning teacher

Teaching – **Protocol II**: The teacher (who knows f) provides training examples

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active – **Protocol I**: The learner proposes instances as queries to the learning teacher

- Teaching **Protocol II**: The teacher (who knows f) provides training examples
 - Protocol III: Some random source (e.g. Nature) provides training examples; the Teacher (Nature) provides the labels (f(x))

There is a hidden (monotone) conjunction for the learner (you) to learn

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

There are 100 Boolean variables. But you don't know that only these *five* are relevant

How many examples are needed to learn it? How does learning proceed?

Active – **Protocol I**: The learner proposes instances as queries to the learning teacher

- Teaching **Protocol II**: The teacher (who knows f) provides training examples
 - Protocol III: Some random source (e.g. Nature) provides training examples; the Teacher (Nature) provides the labels (f(x))

Let us compare these protocols.

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

If the learner can choose the queries wisely, then each query will force the teacher to reveal new information about the hidden function

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

Learning Conjunctions

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

– Learner asks: What is the label for (1,1,1...,1,0)?

Teacher's answer: f(x) = 0

Learner's conclusion: Yes, x_{100} is in f

Note: 0 = False 1 = True

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- Learner asks: What is the label for (1,1,1...,1,0)?

```
Teacher's answer: f(x) = 0
```

```
Learner's conclusion: Yes, x_{100} is in f
```

Why? To learn whether x_{100} is in the true function, the learner can look at the label assigned to this specific instance

- 1. If the label is false, setting x_{100} to 0 makes the output 0. That is, x_{100} is part of the conjunction
- 2. If the label is true, setting x_{100} to 0 does not make the output 0. That is, x_{100} is not needed in the conjunction

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for (1,1,1...,1,0)? f(x) = 0 (conclusion: x_{100} is in f)
- What is the label for (1,1,...1,0,1)? f(x) = 1 (conclusion: x_{99} is not in f)

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for (1,1,1...,1,0)? f(x) = 0 (conclusion: x_{100} is in f)
- What is the label for (1,1,...1,0,1)? f(x) = 1 (conclusion: x_{99} is not in f)
- ...

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for (1,1,1...,1,0)? f(x) = 0 (conclusion: x_{100} is in f)
- What is the label for (1,1,...1,0,1)? f(x) = 1 (conclusion: x_{99} is not in f)
- ...
- What is the label for (1,0,...1,1,1)? f(x) = 0 (conclusion: x_2 is in f)

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for (1,1,1...,1,0)? f(x) = 0 (conclusion: x_{100} is in f)
- What is the label for (1,1,...1,0,1)? f(x) = 1 (conclusion: x_{99} is not in f)
- ...
- What is the label for (1,0,...1,1,1)? f(x) = 0 (conclusion: x_2 is in f)
- What is the label for (0,1,...1,1,1)? f(x) = 1 (conclusion: x_1 is not in f)

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for (1,1,1...,1,0)? f(x) = 0 (conclusion: x_{100} is in f)
- What is the label for (1,1,...1,0,1)? f(x) = 1 (conclusion: x_{99} is not in f)
- ...
- What is the label for (1,0,...1,1,1)? f(x) = 0 (conclusion: x_2 is in f)
- What is the label for (0,1,...1,1,1)? f(x) = 1 (conclusion: x_1 is not in f)

A straight forward algorithm requires n = 100 queries, and will produce the hidden conjunction (exactly)

$$h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

Protocol I: The learner proposes instances as queries to the teacher

Since we know we are after a monotone conjunction:

- What is the label for (1,1,1...,1,0)? f(x) = 0 (conclusion: x_{100} is in f)
- What is the label for (1,1,...1,0,1)? f(x) = 1 (conclusion: x_{99} is not in f)
- ...
- What is the label for (1,0,...1,1,1)? f(x) = 0 (conclusion: x_2 is in f)
- What is the label for (0,1,...1,1,1)? f(x) = 1 (conclusion: x_1 is not in f)

A straight forward algorithm requires n = 100 queries, and will produce the hidden conjunction (exactly)

$$h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

What happens here if the conjunction is not known to be monotone? If we know of a positive example, a similar algorithm works. Exercise: Verify this

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables
 - $-f(0,1,1,1,1,0,\ldots,0,1) = 1$

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables
 f(0,1,1,1,1,0,...,0,1) = 1
- Next: Teacher proves that each of these variables are required
 - f(0,0,1,1,1,0,...,0,1) = 0 Conclusion: need x₂
 - f(0,1,0,1,1,0,...,0,1) = 0 Conclusion: need x₃
 - f(0,1,1,0,1,0,...,0,1) = 0 Conclusion: need x₄
 - f(0,1,1,1,0,0,...,0,1) = 0 Conclusion: need x₅
 - f(0,1,1,1,1,0,...,0,0) = 0 Conclusion: need x_{100}

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables -f(0,1,1,1,1,0,...,0,1) = 1 These
- Next: Teacher proves that each of these variables are required

Conclusion: need X_{100}

- f(0,0,1,1,1,0,...,0,1) = 0 Conclusion: need x₂
- f(0,1,0,1,1,0,...,0,1) = 0 Conclusion: need x₃
- f(0,1,1,0,1,0,...,0,1) = 0 Conclusion: need x₄
- f(0,1,1,1,0,0,...,0,1) = 0 Conclusion: need x₅
- $f(0,1,1,1,1,0,\dots,0,0) = 0$

All the variables are necessary

These variables are sufficient

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables
 f(0,1,1,1,1,0,...,0,1) = 1
- Next: Teacher proves that each of these variables are required
 - f(0,0,1,1,1,0,...,0,1) = 0 Conclusion: need x₂
 - f(0,1,0,1,1,0,...,0,1) = 0 Conclusion: need x₃
 - _ ...
 - f(0,1,1,1,1,0,...,0,0) = 0 Conclusion: need x_{100}

A straight forward algorithm requires k = 6 examples to produce the hidden conjunction (exactly)

$$h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

...

Protocol II: The teacher (who knows f) provides training examples

- First: Teacher gives a superset of the good variables
 f(0,1,1,1,1,0,...,0,1) = 1
- Next: Teacher proves that each of these variables are required
 Mode
 - f(0,0,1,1,1,0,...,0,1) = 0 Conclusion: need x₂
 - f(0,1,0,1,1,0,...,0,1) = 0 Conclusion: need x₃

Modeling teaching can be very difficult, unfortunately

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

- f(0,1,1,1,1,0,...,0,0) = 0 Conclusion: need x_{100}

A straight forward algorithm requires k = 6 examples to produce the hidden conjunction (exactly)

$$h = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$$

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- <(1,1,1,1,1,1,...,1,1), 1>
- <(1,1,1,0,0,0,...,0,0), 0>
- <(1,1,1,1,0,...0,1,1), 1>
- <(1,0,1,1,1,0,...0,1,1), 0>
- <(1,1,1,1,0,...0,0,1), 1>
- <(1,0,1,0,0,0,...0,1,1), 0>
- <(1,1,1,1,1,1,...,0,1), 1>
- <(0,1,0,1,0,0,...0,1,1), 0>

Notation: <example, label>

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- <(1,1,1,1,1,1,...,1,1), 1>
- <(1,1,1,0,0,0,...,0,0), 0>
- <(1,1,1,1,0,...0,1,1), 1>
- <(1,0,1,1,1,0,...0,1,1), 0>
- <(1,1,1,1,0,...0,0,1), 1>
- <(1,0,1,0,0,0,...0,1,1), 0>
- <(1,1,1,1,1,1,...,0,1), 1>
- <(0,1,0,1,0,0,...0,1,1), 0>

Look for the variables that are present in *every* positive example.

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

All other variables can be eliminated

Why?

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- <(1,1,1,1,1,1,...,1,1), 1>
- <(1,1,1,0,0,0,...,0,0), 0>
- <(1,1,1,1,0,...0,1,1), 1>
- <(1,0,1,1,1,0,...0,1,1), 0>
- <(1,1,1,1,0,...0,0,1), 1>
- <(1,0,1,0,0,0,...0,1,1), 0>
- <(1,1,1,1,1,1,...,0,1), 1>
- $< (0, 1, 0, 1, 0, 0, \dots 0, 1, 1), 0 >$

For a reasonable learning algorithm (by *elimination*), the final hypothesis will be

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

 $h = x_1 \land x_2 \land x_3 \land x_4 \land x_5 \land x_{100}$

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

 $- < (1, 1, 1, 1, 1, 1, ..., 1, 1), 1 > \\- < (1, 1, 1, 0, 0, 0, ..., 0, 0), 0 > \\- < (1, 1, 1, 1, 1, 0, ..., 0, 1, 1), 1 > \\- < (1, 0, 1, 1, 1, 0, ..., 0, 1, 1), 0 > \\- < (1, 1, 1, 1, 1, 0, ..., 0, 0, 1), 1 > \\- < (1, 0, 1, 0, 0, 0, ..., 0, 1, 1), 0 > \\- < (0, 1, 0, 1, 0, 0, ..., 0, 1, 1), 0 > \\- < (0, 1, 0, 1, 0, 0, ..., 0, 1, 1), 0 > \\$

For a reasonable learning algorithm (by *elimination*), the final hypothesis will be

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

 $h = x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

Whenever the output is 1, x_1 is present

Protocol III: Some random source (nature) provides training examples

Teacher (Nature) provides the labels (f(x))

- < 1,1,1,1,1,1,...,0,1), 1>
- <(0,1,0,1,0,0,...0,1,1), 0>

For a reasonable learning algorithm (by *elimination*), the final hypothesis will be

 $f = x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$

$$h = \mathbf{x_1} \land x_2 \land x_3 \land x_4 \land x_5 \land x_{100}$$

Whenever the output is 1, x_1 is present

With the given data, we only learned an *approximation* to the true concept. Is it good enough?

Two Directions for How good is our learning algorithm?

- Can analyze the probabilistic intuition
 - Never saw $x_1=0$ in positive examples, maybe we'll never see it
 - And if we do, it will be with small probability, so the concepts we learn may be *pretty good*
 - *Pretty good:* In terms of performance on future data
 - PAC framework

Two Directions for How good is our learning algorithm?

- Can analyze the probabilistic intuition
 - Never saw $x_1=0$ in positive examples, maybe we'll never see it
 - And if we do, it will be with small probability, so the concepts we learn may be *pretty good*
 - *Pretty good:* In terms of performance on future data
 - PAC framework
- *Mistake Driven* Learning algorithms
 - Update your hypothesis only when you make mistakes
 - Define *good* in terms of how many mistakes you make before you stop