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Sequences abound in NLP
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John lives in Salt Lake City

Sentences are sequences of words
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S a l t  L a k e  C i t y

John lives in Salt Lake City

Paragraphs are sequences of sentences
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And so on… inputs are naturally sequences at different levels
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Outputs can also be sequences

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.



Sequences abound in NLP

8

S a l t  L a k e  C i t y

John lives in Salt Lake City

Part-of-speech tags form a sequence

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.

John lives in Salt Lake City



Sequences abound in NLP

9

S a l t  L a k e  C i t y

John lives in Salt Lake City

Part-of-speech tags form a sequence

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun



Sequences abound in NLP

10

S a l t  L a k e  C i t y

John lives in Salt Lake City

Even things that don’t look like a sequence can be made to look like one
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Noun Verb Preposition Noun Noun Noun

Person Location

Example: Named entity tags
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And we can get very creative with such encodings
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Noun Verb Preposition Noun Noun Noun

Example: We can encode parse trees as a sequence of 
decisions needed to construct the tree
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John lives in Salt Lake City

And we can get very creative with such encodings

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.

Noun Verb Preposition Noun Noun Noun

Example: We can encode parse trees as a sequence of 
decisions needed to construct the tree

B-PER O O B-LOC I-LOC I-LOC

Natural question: How do we model sequential inputs and outputs?

More concretely, we need a mechanism that allows us to

1. Capture sequential dependencies between inputs

2. Model uncertainty over sequential outputs



Modeling sequences: The problem

Suppose we want to build a language model that computes the probability 
of sentences

We can write the probability as 

𝑃 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛 =&
𝑖

𝑃(𝑥𝑖 ∣ 𝑥1, 𝑥2⋯ , 𝑥𝑖−1)
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It was a bright cold day in April.

Example: A Language model 
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It was a bright cold day in April.

Probability of a word starting a sentence

Example: A Language model 
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It was a bright cold day in April.

Probability of a word starting a sentence

Probability of a word following “It”

Example: A Language model 
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Probability of a word following “It was”



It was a bright cold day in April.

Probability of a word starting a sentence

Probability of a word following “It”

Example: A Language model 
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Probability of a word following “It was”

Probability of a word following “It was a”



It was a bright cold day in April.

Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “It was”

Probability of a word following “It was a”

Example: A Language model 

21



A history-based model

Each token is dependent on all the tokens that came before it
– Simple conditioning
– Each P(xi | …) is a multinomial probability distribution over the tokens

• What is the problem here?
– How many parameters do we have? 

• Grows with the size of the sequence!
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The traditional solution: Lose the history

Make a modeling assumption

Example: The first order Markov model assumes that
𝑃 𝑥' 𝑥(, 𝑥), ⋯ , 𝑥'*( = 𝑃(𝑥' ∣ 𝑥'*()

This allows us to simplify 

𝑃 𝑥(, 𝑥), 𝑥+, ⋯ , 𝑥, =&
'

𝑃(𝑥' ∣ 𝑥(, 𝑥)⋯ , 𝑥'*()
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These dependencies are ignored
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Example: Another language model

It was a bright cold day in April
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Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “was”

Probability of a word following “a”
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Probability of a word starting a sentence
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Probability of a word following “a”

If there are K tokens/states, how many parameters do we need? 



Example: Another language model

It was a bright cold day in April
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Probability of a word starting a sentence

Probability of a word following “It”

Probability of a word following “was”

Probability of a word following “a”

If there are K tokens/states, how many parameters do we need? O(K2)



Can we do better?

• Can we capture the meaning of the entire history without arbitrarily 
growing the number of parameters?

• Or equivalently, can we discard the Markov assumption?

• Can we represent arbitrarily long sequences as fixed sized vectors? 
– Perhaps to provide features for subsequent classification

• Answer: Recurrent neural networks (RNNs)

30



Can we do better?

• Can we capture the meaning of the entire history without arbitrarily 
growing the number of parameters?

• Or equivalently, can we discard the Markov assumption?

• Can we represent arbitrarily long sequences as fixed sized vectors? 
– Perhaps to provide features for subsequent classification

• Answer: Recurrent neural networks (RNNs)

31



Can we do better?

• Can we capture the meaning of the entire history without arbitrarily 
growing the number of parameters?

• Or equivalently, can we discard the Markov assumption?

• Can we represent arbitrarily long sequences as fixed sized vectors? 
– Perhaps to provide features for subsequent classification

• Answer: Recurrent neural networks (RNNs)

32


