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Recurrent neural networks

• First introduced by Elman 1990

• Provides a mechanism for representing sequences of arbitrary length 
into vectors that encode the sequential information

• A useful design abstraction if you’d like to work with sequential data
– Till transformers came along, for a few years, RNNs were the best tools for 

representing text sequences



The RNN abstraction

A high level overview that doesn’t go into details 
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An RNN 
cell
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An RNN cell is a unit 
of differentiable 
compute that maps 
inputs to outputs

So far, no way to 
build a sequence of 
such cells
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An RNN 
cell

Input

Output

Recurrent outputRecurrent input

To allow the ability to 
compose these cells, they 
take a recurrent input 
from a previous such cell

In addition to the output, 
they also produce a 
recurrent output that can 
serve as a memory of past 
states for the next such cell



The RNN abstraction

A high level overview that doesn’t go into details 
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Conceptually two operations 

Using the input and the 
recurrent input (also called the 
previous cell state), compute

1. The next cell state

2. The output



The RNN abstraction: A simple example
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John lives in Salt Lake City

This template is unrolled for each input
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This computation 
graph is used here



The RNN abstraction
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An RNN 
cell

Input

Output

Recurrent outputRecurrent input

Sometimes this is represented as a “neural network with a loop”. 

But really, when unrolled, there are no loops. Just a big feedforward network.



An abstract RNN :Notation

• Inputs to cells: 𝐱!at the 𝑡"# step
– These are vectors

• Cell states (i.e. recurrent inputs and outputs): 𝐬!at the 𝑡"# step
– These are also vectors

• Outputs: 𝐲!at the 𝑡"# step
– These are also vectors

• At each step:
– Compute the next cell state: 𝐬!"# = R(𝐱! , 𝒔!) 
– Compute the output: 𝒚! = O(𝐬!"#) 
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An abstract RNN :Notation

• Inputs to cells: 𝐱!at the 𝑡"# step
– These are vectors

• Cell states (i.e. recurrent inputs and outputs): 𝐬!at the 𝑡"# step
– These are also vectors

• Outputs: 𝐲!at the 𝑡"# step
– These are also vectors

• At each step:
– Compute the next cell state: 𝐬! = R(𝐬!$#, 𝐱!) 
– Compute the output: 𝒚! = O(𝐬!) 
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Both these functions can be parameterized.
That is, they can be neural networks whose 
parameters are trained.



What does unrolling the RNN do?

• At each step:
– Compute the next cell state: 𝐬! = R(𝐬!"#, 𝐱!) 
– Compute the output: 𝒚! = O(𝐬!) 

• We can write this as:
– 𝐬# = R(𝐬$, 𝐱#) 
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Encodes the sequence till t=2 into a single vector
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Encodes the sequence till t=3 into a single vector



What does unrolling the RNN do?

• At each step:
– Compute the next cell state: 𝐬! = R(𝐬!"#, 𝐱!) 
– Compute the output: 𝒚! = O(𝐬!) 

• We can write this as:
– 𝐬# = R(𝐬$, 𝐱#) 
– 𝐬% = R(𝐬#, 𝐱%) = R(R 𝐬$, 𝐱# , 𝐱%)	
– 𝐬& = R(𝐬%, 𝐱&) = R R R(𝐬$, 𝐱# , 𝐱% , 𝐱&)	
– 𝐬' = R(𝐬&, 𝐱') = R R R(𝐬$, 𝐱# , 𝐱% , 𝐱&), 𝐱')	
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What does unrolling the RNN do?

• At each step:
– Compute the next cell state: 𝐬! = R(𝐬!"#, 𝐱!) 
– Compute the output: 𝒚! = O(𝐬!) 
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Encodes the sequence till t=4 
into a single vector



What does unrolling the RNN do?

• At each step:
– Compute the next cell state: 𝐬! = R(𝐬!"#, 𝐱!) 
– Compute the output: 𝒚! = O(𝐬!) 

• We can write this as:
– 𝐬# = R(𝐬$, 𝐱#) 
– 𝐬% = R(𝐬#, 𝐱%) = R(R 𝐬$, 𝐱# , 𝐱%)	
– 𝐬& = R(𝐬%, 𝐱&) = R R R(𝐬$, 𝐱# , 𝐱% , 𝐱&)	
– 𝐬' = R(𝐬&, 𝐱') = R R R(𝐬$, 𝐱# , 𝐱% , 𝐱&), 𝐱')	
… and so on
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