Recurrent Neural Networks

Overview

- 1. Modeling sequences
- 2. Recurrent neural networks: An abstraction
- 3. Usage patterns for RNNs
- 4. BiDirectional RNNs
- 5. A concrete example: The Elman RNN
- 6. The vanishing gradient problem
- 7. Long short-term memory units

Overview

- 1. Modeling sequences
- *2. Recurrent neural networks: An abstraction*
- 3. Usage patterns for RNNs
- 4. BiDirectional RNNs
- 5. A concrete example: The Elman RNN
- 6. The vanishing gradient problem
- 7. Long short-term memory units

Recurrent neural networks

- First introduced by Elman 1990
- Provides a mechanism for representing sequences of arbitrary length into vectors that encode the sequential information
- A useful design abstraction if you'd like to work with sequential data
	- Till transformers came along, for a few years, RNNs were the best tools for representing text sequences

A high level overview that doesn't go into details

An RNN cell is a unit of differentiable compute that maps inputs to outputs

A high level overview that doesn't go into details

An RNN cell is a unit of differentiable compute that maps inputs to outputs

So far, no way to build a sequence of such cells

A high level overview that doesn't go into details

A high level overview that doesn't go into details

A high level overview that doesn't go into details

Conceptually two operations

Using the input and the recurrent input (also called the previous cell state), compute

- 1. The next cell state
- 2. The output

John lives in Salt Lake City

This template is **unrolled** for each input

Sometimes this is represented as a "neural network with a loop".

But really, when unrolled, there are no loops. Just a big feedforward network.

- Inputs to cells: \mathbf{x}_t at the t^{th} step
	- These are vectors

- Inputs to cells: \mathbf{x}_t at the t^{th} step
	- These are vectors
- Cell states (i.e. recurrent inputs and outputs): \mathbf{s}_t at the t^{th} step
	- These are also vectors

- Inputs to cells: \mathbf{x}_t at the t^{th} step
	- These are vectors
- Cell states (i.e. recurrent inputs and outputs): \mathbf{s}_t at the t^{th} step
	- These are also vectors
- Outputs: y_t at the t^{th} step
	- These are also vectors

• At each step:

- Inputs to cells: \mathbf{x}_t at the t^{th} step
	- These are vectors
- Cell states (i.e. recurrent inputs and outputs): \mathbf{s}_t at the t^{th} step
	- These are also vectors
- Outputs: y_t at the t^{th} step
	- These are also vectors
- At each step:
	- Compute the next cell state: $\mathbf{s}_t = R(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$

- Inputs to cells: \mathbf{x}_t at the t^{th} step
	- These are vectors
- Cell states (i.e. recurrent inputs and outputs): \mathbf{s}_t at the t^{th} step
	- These are also vectors
- Outputs: v_t at the t^{th} step
	- These are also vectors
- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \mathbf{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$.

Both these functions can be parameterized. That is, they can be neural networks whose parameters are trained.

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

$$
- \mathbf{s}_1 = R(\mathbf{s}_0, \mathbf{x}_1)
$$

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

$$
- \mathbf{s}_1 = R(\mathbf{s}_0, \mathbf{x}_1)
$$

- \mathbf{s}_2 = R(\mathbf{s}_1, \mathbf{x}_2) = R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2)

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

-
$$
s_1 = R(s_0, x_1)
$$

- $s_2 = R(s_1, x_2) = R(R(s_0, x_1), x_2)$ - \longrightarrow Encodes the sequence till t=2 into a single vector

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

$$
- \mathbf{s}_1 = R(\mathbf{s}_0, \mathbf{x}_1)
$$

- \mathbf{s}_2 = R(\mathbf{s}_1, \mathbf{x}_2) = R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2)
- \mathbf{s}_3 = R(\mathbf{s}_2, \mathbf{x}_3) = R(R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3)

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

$$
- \mathbf{s}_1 = R(\mathbf{s}_0, \mathbf{x}_1)
$$

- \mathbf{s}_2 = R(\mathbf{s}_1, \mathbf{x}_2) = R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2)
- \mathbf{s}_3 = R(\mathbf{s}_2, \mathbf{x}_3) = R(R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3) \leftarrow \text{Encodes the sequence till t=3 into a single vector

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

$$
- \mathbf{s}_1 = R(\mathbf{s}_0, \mathbf{x}_1)
$$

\n
$$
- \mathbf{s}_2 = R(\mathbf{s}_1, \mathbf{x}_2) = R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2)
$$

\n
$$
- \mathbf{s}_3 = R(\mathbf{s}_2, \mathbf{x}_3) = R(R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3)
$$

\n
$$
- \mathbf{s}_4 = R(\mathbf{s}_3, \mathbf{x}_4) = R(R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3), \mathbf{x}_4)
$$

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

-
$$
s_1
$$
 = R(s_0 , x_1)
\n- s_2 = R(s_1 , x_2) = R(R(s_0 , x_1), x_2)
\n- s_3 = R(s_2 , x_3) = R(R(R(s_0 , x_1), x_2), x_3)
\n- s_4 = R(s_3 , x_4) = R(R(R(s_0 , x_1), x_2), x_3), x_4)
\n- $\frac{6}{100}$ encodes the sequence till t=4 into a single vector

- At each step:
	- Compute the next cell state: $\mathbf{s}_t = \text{R}(\mathbf{s}_{t-1}, \mathbf{x}_t)$
	- Compute the output: $y_t = O(s_t)$
- We can write this as:

$$
- s1 = R(s0, x1)
$$

\n
$$
- s2 = R(s1, x2) = R(R(s0, x1), x2)
$$

\n
$$
- s3 = R(s2, x3) = R(R(R(s0, x1), x2), x3)
$$

\n
$$
- s4 = R(s3, x4) = R(R(R(s0, x1), x2), x3), x4)
$$

\n... and so on