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Recurrent neural networks

e First introduced by Elman 1990

* Provides a mechanism for representing sequences of arbitrary length
into vectors that encode the sequential information

e A useful design abstraction if you’d like to work with sequential data

— Till transformers came along, for a few years, RNNs were the best tools for
representing text sequences
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The RNN abstraction

A high level overview that doesn’t go into details
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The RNN abstraction

A high level overview that doesn’t go into details
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The RNN abstraction: A simple example
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The RNN abstraction

Sometimes this is represented as a “neural network with a loop”.

But really, when unrolled, there are no loops. Just a big feedforward network.
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An abstract RNN :Notation
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— These are vectors
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An abstract RNN :Notation

* Inputs to cells: X;at the t'P

— These are vectors

step

Cell states (i.e. recurrent inputs and outputs): s;at the tth step
— These are also vectors

e Qutputs: y,at the ' step
— These are also vectors

e At each step:
— Compute the next cell state: s; =4% Both these functions can be parameterized.

— Compute the output: y, = 0(s;) That is, they can bg neural networks whose
parameters are trained.
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

e \We can write this as:
— s; = R(Sp, X1)
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

e \We can write this as:
— s; = R(Sp, X1)
— s, = R(s1,X2) = R(R(Sp,X1),X3)
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

* We can write this as:
— S = R(S0,X1)
— s, = R(s1,Xx,) = R(R(SO,Xl),XZ)‘ Encodes the sequence till t=2 into a single vector

24



What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

e \We can write this as:
— 81 = R(s¢,Xx4)
— s, = R(s1,X2) = R(R(Sp,X1),X3)
— S3 = R(SZJ XS) — R(R(R(SOI Xl);XZ)) XS)
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

* We can write this as:
— 81 = R(S0,X1)
— 53 = R(s1,X2) = R(R(S¢, X1), X2)
— S3 = R(SZ»XB) — R(R(R(SOJXl)JXZ)»XS) <— Encodes the sequence till t=3 into a single vector
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

* We can write this as:
— $1 = R(S¢,X1)
— 83 = R(s1,X2) = R(R(sp, X1), X3)
— 83 = R(s2,X3) = R(R(R(s, X1),X3), X3)
— s, = R(s3,X4) = R(R(R(S¢, X1),X3),X3),X4)
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

e \We can write this as:
— 81 = R(s¢,Xx4)
— s, = R(s1,X2) = R(R(Sp,X1),X3)
— S3 = R(SZJ XS) — R(R(R(SOI Xl);XZ)) XS)

— 84 = R(s3,%x4) = R(R(R(Sg,X1),X3),X3),X4) *

Encodes the sequence till t=4
into a single vector
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What does unrolling the RNN do?

e At each step:

— Compute the next cell state: s; = R(s¢_1, X¢)
— Compute the output: y; = O(S¢)

* We can write this as:
— 81 = R(Sp, X1)
— S, = R(s1,X3) = R(R(sq, X1), X2)
— s3 = R(s2,X3) = R(R(R(S¢, X1), X3),X3)
— s, = R(s3,X4) = R(R(R(S¢,X1),X2),X3),Xy4)
...and so on
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