Recurrent Neural Networks

Overview

- 1. Modeling sequences
- 2. Recurrent neural networks: An abstraction
- 3. Usage patterns for RNNs
- 4. BiDirectional RNNs
- 5. A concrete example: The Elman RNN
- 6. The vanishing gradient problem
- 7. Long short-term memory units

Overview

- 1. Modeling sequences
- 2. Recurrent neural networks: An abstraction
- 3. Usage patterns for RNNs
- *4. BiDirectional RNNs*
- 5. A concrete example: The Elman RNN
- 6. The vanishing gradient problem
- 7. Long short-term memory units

Why left to right?

Everything we saw so far models sequences (e.g. words) from left to right

Implicit assumption: If we want to represent a word in a sentence, the words before are useful

Is this right?

Why left to right?

Everything we saw so far models sequences (e.g. words) from left to right

Implicit assumption: If we want to represent a word in a sentence, the words before are useful

Is this right? Not really

For example: For a sequence labeling task, the words after a target word may also be useful in deciding its label

How do we address this?

Bidirectional RNNs

[Schuster and Paliwal 1997]

One answer: Maintain two separate RNNs – one forward and one reverse

Forward

John ate cake

First, the forward case. We have seen this before.

Forward

John ate cake

First, the forward case. We have seen this before.

Forward

BiRNN: A simple example *Forward*

John ate cake

The forward RNN

BiRNN: A simple example *Forward*

John ate cake

Reverse

John ate cake

Reverse

John ate cake

Reverse

John ate cake

BiRNN: Putting both parts together

John ate cake

Another way of seeing this

Concatenate to get the representation for the word *John* that accounts for both left and right contexts

Another way of seeing this

Concatenate to get the representation for the word *ate* that accounts for both left and right contexts

Another way of seeing this

Concatenate to get the representation for the word *cake* that accounts for both left and right contexts

A Bidirectional RNN

!" output is defined by

- Two RNNs
	- $-$ Forward, defined by functions $R^f(\bold{s}^f_{t-1},\bold{x}_t)$ and $O^f(\bold{s}_t)$
	- $-$ Backward, defined by functions $R^b({\bf s}^b_{t+1},{\bf x}_t)$ and $O^b({\bf s}_t$

A Bidirectional RNN

- Two RNNs
	- $-$ Forward, defined by functions $R^f(\bold{s}^f_{t-1},\bold{x}_t)$ and $O^f(\bold{s}_t)$
	- $-$ Backward, defined by functions $R^b({\bf s}^b_{t+1},{\bf x}_t)$ and $O^b({\bf s}_t$
- The i^{th} output is defined by

 $\mathbf{y}_i = \lbrack \mathit{O}^f\big(\mathbf{s}_t^f\big)$, $\mathit{O}^b\big(\mathbf{s}_t^b\big)\rbrack$

A Bidirectional RNN

- Two RNNs
	- $-$ Forward, defined by functions $R^f(\bold{s}^f_{t-1},\bold{x}_t)$ and $O^f(\bold{s}_t)$
	- $-$ Backward, defined by functions $R^b({\bf s}^b_{t+1},{\bf x}_t)$ and $O^b({\bf s}_t$
- The i^{th} output is defined by

 $\mathbf{y}_i = \lbrack \mathit{O}^f\big(\mathbf{s}_t^f\big)$, $\mathit{O}^b\big(\mathbf{s}_t^b\big)\rbrack$

• Another way to write this

biRNN($\mathbf{x}_{1:n}$, t) = [RNN^f($\mathbf{x}_{1:t}$), RNN^b($\mathbf{x}_{n:t}$)]

BiRNNs: Summary

- Allows capturing both left and right contexts
- Commonly used if RNNs are used as a base encoding layer for text – Often stacked
- Specific versions of RNNs give us different BiRNNs
	- BiLSTMs or BiGRUs typically used