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A simple RNN 

1. How to generate the current state using the previous state and the 
current input?

Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

2. How to generate the current output using the current state?
The output is the state. That is, 𝒚! = 𝐬!
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How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)
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How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)
– The outputs are labels associated with each word
– Losses for each word are added up
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Gradients to the rescue

• We have a computation graph

• Use back propagation to compute gradients of the loss with respect to 
the parameters (𝐖!	,𝐖# , 𝐛)
– Sometimes called Backpropagation Through Time (BPTT)

• Update gradients using SGD or a variant
– Adam, for example
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Does this work? Let’s see a simple example
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To avoid complicating the notation more than necessary, suppose 
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Let us examine the non-linearity in this system due to the activation function
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Suppose 𝑔 𝑧 = tanh 𝑧

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step
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loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!
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State: s! = 𝑔(𝑡!)	
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Does this work? Let’s see a simple example

18
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Then &'&(	 = 1	 − tanh)(𝑧)

Always between zero and one
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step
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Let’s see what happens with another input
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Two dependencies on 𝑊#
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Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

How does the first input affect the loss for the second term?

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

How does the first input affect the loss for the second term?
Through this term here

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

But this gradient is multiplied 
by all these other terms
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

Let’s focus on the impact 
of the activation terms
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

Let’s focus on the impact 
of the activation terms

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'
&(	
= 1	 − tanh)(𝑧)
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

Let’s focus on the impact 
of the activation terms

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'
&(	
= 1	 − tanh)(𝑧)

Both these gradients are numbers between zero and 
one. Multiplying them scales the gradient down 
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝒍𝟏 = 𝒇(𝒔𝟏)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

With one input, the contribution of the first 
input towards the gradient of the loss of 
the first output is scaled by one term 
between zero and one.



Does this work? Let’s see a simple example

40

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝒍𝟐 = 𝒇(𝒔𝟐)	

With two inputs, the contribution of the 
first input towards the gradient of the loss 
of the second output is scaled by two terms 
between zero and one.
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To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: 𝑠) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

nth input: 𝑥,
Transform: 𝑡, = 𝑠,-!𝑊#	 + 𝑥,𝑊% + 𝑏
State: s, = 𝑔(𝑡,)	
Loss: 𝒍𝒏 = 𝒇(𝒔𝒏)	

With n inputs, the contribution of the first 
input towards the gradient of the loss of 
the nth output is scaled by n terms between 
zero and one.



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

42

[Bengio et al 1994]
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• As the length of the sequence grows, the impact of the far away inputs 
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• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together
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Why is this a problem?
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between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
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Why is this a problem?

I have a banana and an apple. My friend ate the banana and I ate the ________?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
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• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks
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Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. So I ate the ________?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates
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Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates
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Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?

Consider a RNN language model for this task. If it makes a 
mistake in the final word, the signal for correcting it is far away.



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates
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Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?

[Hochreiter and Schmidhuber 1997]: 
“Backpropagation through time is too sensitive to recent distractions.”



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

49



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates
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Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	

51

Multiplying many of these won’t vanish the gradient if the pre-
activation value is positive.

But can completely erase the gradient if it is negative.
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activation value is positive.
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Multiplying many of these won’t vanish the gradient if the pre-
activation value is positive.

But can completely erase the gradient if it is negative.



Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	
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Multiplying many of these won’t vanish the gradient if the pre-activation value is positive.

But can completely erase the gradient if it is negative.



Exploding gradients

If our gradients are not fractional (e.g. with ReLUs), we might end up 
multiplying many large numbers during gradient computation

This could quickly give numeric overflow errors 
The Exploding Gradient Problem 
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Addressing vanishing/exploding gradients

Approach 2: Don’t take derivatives all the way to the beginning
– The problem occurs because we need to compute derivatives with respect to the early 

inputs
– Truncate the backpropagation process instead

– Called Truncated Backpropagation Through Time (TBPTT)

Essentially, this makes a Markov-like assumption.
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Addressing vanishing/exploding gradients

Approach 3: Use a ReLU activation, but explicitly avoid exploding gradients
– If a gradient is larger than a certain threshold, truncate it

– ReLUs reduce vanishing gradients, and truncation takes care of exploding gradients
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Addressing vanishing/exploding gradients

Approach 4: Changing the internals of the RNN more thoroughly…

… by using a gated architecture such as an LSTM or a GRU unit
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