
Recurrent Neural Networks



Overview

1. Modeling sequences

2. Recurrent neural networks: An abstraction

3. Usage patterns for RNNs

4. BiDirectional RNNs

5. A concrete example: The Elman RNN

6. The vanishing gradient problem

7. Long short-term memory units

1



Overview

1. Modeling sequences

2. Recurrent neural networks: An abstraction

3. Usage patterns for RNNs

4. BiDirectional RNNs

5. A concrete example: The Elman RNN

6. The vanishing gradient problem

7. Gating and Long short-term memory units

2



A simple RNN 

1. How to generate the current state using the previous state and the 
current input?

Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

2. How to generate the current output using the current state?
The output is the state. That is, 𝒚! = 𝐬!

3



How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)

4I

Initial 
state

like cake



How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)
– The outputs are labels associated with each word

5I

Initial 
state

like cake

Pronoun Verb Noun



How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)
– The outputs are labels associated with each word
– Losses for each word are added up

6I

Initial 
state

like cake

Pronoun Verb Noun

loss1 loss2 loss3

Loss



Gradients to the rescue

• We have a computation graph

• Use back propagation to compute gradients of the loss with respect to 
the parameters (𝐖!	,𝐖# , 𝐛)
– Sometimes called Backpropagation Through Time (BPTT)

• Update gradients using SGD or a variant
– Adam, for example

7



A simple RNN 

1. How to generate the current state using the previous state and the 
current input?

Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

2. How to generate the current output using the current state?
The output is the state. That is, 𝒚! = 𝐬!

8



Does this work? Let’s see a simple example

9

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step



Does this work? Let’s see a simple example

10

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	



Does this work? Let’s see a simple example

11

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	



Does this work? Let’s see a simple example

12

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Follows the chain rule



Does this work? Let’s see a simple example

13

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Follows the chain rule



Does this work? Let’s see a simple example

14

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Follows the chain rule



Does this work? Let’s see a simple example

15

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Follows the chain rule



Does this work? Let’s see a simple example

16

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Let us examine the non-linearity in this system due to the activation function



Does this work? Let’s see a simple example

17

Suppose 𝑔 𝑧 = tanh 𝑧

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	



Does this work? Let’s see a simple example

18

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'&(	 = 1	 − tanh)(𝑧)

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	



Does this work? Let’s see a simple example

19

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'&(	 = 1	 − tanh)(𝑧)

Always between zero and one



Does this work? Let’s see a simple example

20

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'&(	 = 1	 − tanh)(𝑧)

𝜕𝑠!
𝜕𝑡!

= 1	 − tanh" 𝑡!That is



Does this work? Let’s see a simple example

21

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

𝜕𝑙!
𝜕𝑊%

=
𝜕𝑙!
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'&(	 = 1	 − tanh)(𝑧)

𝜕𝑠!
𝜕𝑡!

= 1	 − tanh" 𝑡!That is

A number between zero and one.



Does this work? Let’s see a simple example

22

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Let’s see what happens with another input



Does this work? Let’s see a simple example

23

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	



Does this work? Let’s see a simple example

24

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule



Does this work? Let’s see a simple example

25

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

26

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

27

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

28

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Two dependencies on 𝑊#



Does this work? Let’s see a simple example

29

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

30

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

31

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

32

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

33

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

How does the first input affect the loss for the second term?

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

34

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

Once again, the chain rule

How does the first input affect the loss for the second term?
Through this term here

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%



Does this work? Let’s see a simple example

35

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

But this gradient is multiplied 
by all these other terms



Does this work? Let’s see a simple example

36

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

Let’s focus on the impact 
of the activation terms



Does this work? Let’s see a simple example

37

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

Let’s focus on the impact 
of the activation terms

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'
&(	
= 1	 − tanh)(𝑧)



Does this work? Let’s see a simple example

38

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

Let’s compute the derivative of the 
loss with respect to the parameter 𝑊%

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

𝜕𝑙)
𝜕𝑊%

=
𝜕𝑙)
𝜕𝑠)

⋅
𝜕𝑠)
𝜕𝑡)

⋅
𝜕𝑡)
𝜕𝑊%

+
𝜕𝑡)
𝜕𝑠!

⋅
𝜕𝑠!
𝜕𝑡!

⋅
𝜕𝑡!
𝜕𝑊%

Once again, the chain rule

Let’s focus on the impact 
of the activation terms

Suppose 𝑔 𝑧 = tanh 𝑧

Then &'
&(	
= 1	 − tanh)(𝑧)

Both these gradients are numbers between zero and 
one. Multiplying them scales the gradient down 



Does this work? Let’s see a simple example

39

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝒍𝟏 = 𝒇(𝒔𝟏)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

With one input, the contribution of the first 
input towards the gradient of the loss of 
the first output is scaled by one term 
between zero and one.



Does this work? Let’s see a simple example

40

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: s) = 𝑔(𝑡))	
Loss: 𝒍𝟐 = 𝒇(𝒔𝟐)	

With two inputs, the contribution of the 
first input towards the gradient of the loss 
of the second output is scaled by two terms 
between zero and one.



Does this work? Let’s see a simple example

41

To avoid complicating the notation more than necessary, suppose 
1. The inputs, states and outputs are all scalars 
2. The loss at each step is a function 𝑓 of the state at that step

First input: 𝑥!
Transform: 𝑡! = 𝑠"𝑊#	 + 𝑥!𝑊% + 𝑏
State: s! = 𝑔(𝑡!)	
Loss: 𝑙! = 𝑓(𝑠!)	

Second input: 𝑥)
Transform: 𝑡) = 𝑠!𝑊#	 + 𝑥)𝑊% + 𝑏
State: 𝑠) = 𝑔(𝑡))	
Loss: 𝑙) = 𝑓(𝑠))	

nth input: 𝑥,
Transform: 𝑡, = 𝑠,-!𝑊#	 + 𝑥,𝑊% + 𝑏
State: s, = 𝑔(𝑡,)	
Loss: 𝒍𝒏 = 𝒇(𝒔𝒏)	

With n inputs, the contribution of the first 
input towards the gradient of the loss of 
the nth output is scaled by n terms between 
zero and one.



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

42

[Bengio et al 1994]



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

43

Why is this a problem?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

44

Why is this a problem?

I have a banana and an apple. My friend ate the banana and I ate the ________?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

45

Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. So I ate the ________?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

46

Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

47

Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?

Consider a RNN language model for this task. If it makes a 
mistake in the final word, the signal for correcting it is far away.



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

48

Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted a 
fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?

[Hochreiter and Schmidhuber 1997]: 
“Backpropagation through time is too sensitive to recent distractions.”



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

49



The vanishing gradient problem

• As the length of the sequence grows, the impact of the far away inputs 
diminishes because the gradient vanishes

• We saw an example where states and inputs are scalars.
– Applies when the states and inputs are vectors/matrices as in usual networks

• Happens because the gradient of the non-linear activation is a number 
between zero and one
– … and many such numbers are multiplied together

• Applicable not only to recurrent networks, but to any case where we have a 
long chain of such activations (i.e. in a deep network): Layers closer to the loss 
will get larger updates

50



Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	

51

Multiplying many of these won’t vanish the gradient if the pre-
activation value is positive.

But can completely erase the gradient if it is negative.



Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	

52

Multiplying many of these won’t vanish the gradient if the pre-
activation value is positive.

But can completely erase the gradient if it is negative.



Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	

53

Multiplying many of these won’t vanish the gradient if the pre-
activation value is positive.

But can completely erase the gradient if it is negative.



Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	

54

Multiplying many of these won’t vanish the gradient if the pre-
activation value is positive.

But can completely erase the gradient if it is negative.



Addressing the vanishing gradient problem

Approach 1: Change the activation
– The problem occurs because the derivatives of the activation function are small, so 

change it
– Commonly used: the rectified linear unit

ReLU 𝑧 = max(0, 𝑧)
What is its derivative?

𝑑	𝑅𝐸𝐿𝑈
𝑑𝑧 = 41	 if	𝑧 ≥ 0

0 else	

55

Multiplying many of these won’t vanish the gradient if the pre-activation value is positive.

But can completely erase the gradient if it is negative.



Exploding gradients

If our gradients are not fractional (e.g. with ReLUs), we might end up 
multiplying many large numbers during gradient computation

This could quickly give numeric overflow errors 
The Exploding Gradient Problem 

56



Addressing vanishing/exploding gradients

Approach 2: Don’t take derivatives all the way to the beginning
– The problem occurs because we need to compute derivatives with respect to the early 

inputs
– Truncate the backpropagation process instead

– Called Truncated Backpropagation Through Time (TBPTT)

Essentially, this makes a Markov-like assumption.

57



Addressing vanishing/exploding gradients

Approach 3: Use a ReLU activation, but explicitly avoid exploding gradients
– If a gradient is larger than a certain threshold, truncate it

– ReLUs reduce vanishing gradients, and truncation takes care of exploding gradients

58



Addressing vanishing/exploding gradients

Approach 4: Changing the internals of the RNN more thoroughly…

… by using a gated architecture such as an LSTM or a GRU unit

59


