
Recurrent Neural Networks

Overview

1. Modeling sequences

2. Recurrent neural networks: An abstraction

3. Usage patterns for RNNs

4. BiDirectional RNNs

5. A concrete example: The Elman RNN

6. The vanishing gradient problem

7. Long short-term memory units

1

Overview

1. Modeling sequences

2. Recurrent neural networks: An abstraction

3. Usage patterns for RNNs

4. BiDirectional RNNs

5. A concrete example: The Elman RNN

6. The vanishing gradient problem

7. Long short-term memory units

2

Non-linear state updates

The state updates for the vanilla RNN were non-linear
Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

The non-linear activation can lead to vanishing or exploding gradients
Vanishing if absolute values of elements of 𝛻𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	are strictly less than 1

Exploding if absolute values of elements of 𝛻𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	are strictly more than 1

3

Non-linear state updates?

The state updates for the vanilla RNN were non-linear
Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

The non-linear activation can lead to vanishing or exploding gradients

What if the cell state was updated linearly at each time step?
𝐬! = 𝐬!"# + update'

4

Linear

Non-linear state updates?

The state updates for the vanilla RNN were non-linear
Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

The non-linear activation can lead to vanishing or exploding gradients

What if the cell state was updated linearly at each time step?
𝐬! = 𝐬!"# + update'

No cascading multiplications due to the activations

5

Linear

Naïve linear updates

𝐬! = 𝐬!"# + update$

No cascading multiplications due to the activations

How do we know what the update is?
We can calculate it as a function of the input and the state using a small neural network

6

Naïve linear updates

𝐬! = 𝐬!"# + update$

No cascading multiplications due to the activations

How do we know what the update is?
We can calculate it as a function of the input and the state using a small neural network

update! = 𝑔(𝐬!"#𝐖(+ 𝐱!𝐖& + 𝐛)	

7

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

This addresses vanishing gradient problem. Why?

8

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

This addresses vanishing gradient problem. Why?
We can write the state explicitly as

𝐬! =1
)*#

!"#

𝑔(𝐬)"#	𝐖(+ 𝐱)𝐖& + 𝐛)	

9

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

This addresses vanishing gradient problem. Why?
We can write the state explicitly as

𝐬! =1
)*#

!"#

𝑔(𝐬)"#	𝐖(+ 𝐱)𝐖& + 𝐛)	

There is a term that directly relates 𝐬! and 𝐱+without any cascading activations.

10

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

This addresses vanishing gradient problem. Why?
We can write the state explicitly as

𝐬! =1
)*#

!"#

𝑔(𝐬)"#	𝐖(+ 𝐱)𝐖& + 𝐛)	

There is a term that directly relates 𝐬! and 𝐱+without any cascading activations.

11

Why might this approach fail?

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random

12

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random

⤷They can lead to random states

13

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random

⤷They can lead to random states
⤷…tend to be difficult to recover from

14

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random

⤷They can lead to random states
⤷…tend to be difficult to recover from
⤷…tend to lead to overflow

15

Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random

⤷They can lead to random states
⤷…tend to be difficult to recover from
⤷…tend to lead to overflow

What we need: More control of how states and inputs interact

16

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state updates
– How much of a computed update should be saved for the next time step?

– Intuition: Think of the state as a memory and think of the update as a write to the memory.

– Goal: Depending on what our current state and the current input is, choose what to add to the
save

17

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state updates
– How much of a computed update should be saved for the next time step?

– Intuition: Think of the state as a memory and think of the update as a write to the memory.

– Goal: Depending on what our current state and the current input is, choose what to add to the
save

18

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state updates
– How much of a computed update should be saved for the next time step?

– Intuition: Think of the state as a memory and think of the update as a write to the memory.

– Goal: Depending on what our current state and the current input is, choose what to add to the
save

19

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state updates
– How much of a computed update should be saved for the next time step?

– Intuition: Think of the state as a memory and think of the update as a write to the memory.

– Goal: Depending on what our current state and the current input is, choose what part of the
update to add to the state

20

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state reading
– What part of the previous state should be used to make decisions about the current input?

– Intuition: Think of the state as a memory. Maybe to process certain inputs, we don’t need to
access all the memory

– Goal: control what part of the input gets read

21

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state reading
– What part of the previous state should be used to make decisions about the current input?

– Intuition: Think of the state as a memory. Maybe to process certain inputs, we don’t need to
access all the memory

– Goal: control what part of the input gets read

22

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state reading
– What part of the previous state should be used to make decisions about the current input?

– Intuition: Think of the state as a memory. Maybe to process certain inputs, we don’t need to
access all the memory

– Goal: control what part of the input gets read

23

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state reading
– What part of the previous state should be used to make decisions about the current input?

– Intuition: Think of the state as a memory. Maybe to process certain inputs, we don’t need to
access all the memory

– Goal: control what part of the state gets read

24

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled forgetting
– [Gers et al 2000]: Why should the state be remembered forever?

– Intuition: Think of the state as a memory. We need a mechanism that allows unnecessary
memories to be erased

– Goal: Control what part of the state gets erased

25

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled forgetting
– [Gers et al 2000]: Why should the state be remembered forever?

– Intuition: Think of the state as a memory. We need a mechanism that allows unnecessary
memories to be erased

– Goal: Control what part of the state gets erased

26

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled forgetting
– [Gers et al 2000]: Why should the state be remembered forever?

– Intuition: Think of the state as a memory. We need a mechanism that allows unnecessary
memories to be erased

– Goal: Control what part of the state gets erased

27

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Fixing naïve linear updates

Need better control of input-state interactions

• Controlled forgetting
– [Gers et al 2000]: Why should the state be remembered forever?

– Intuition: Think of the state as a memory. We need a mechanism that allows unnecessary
memories to be erased

– Goal: Control what part of the state gets erased

28

𝐬, = 𝐬,-. + 𝑔(𝐬,-.𝐖/ + 𝐱,𝐖0 + 𝐛)

Design goals for controlling state updates

We want mechanisms for:

1. Depending on what our current state and the current input is, choose what part of
the update to add to the state

2. Control what part of the state gets read

3. Control what part of the state gets erased

29

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

30

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements

31

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements

32

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

0
0

−3.2
0
4.9
0
0

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements
We can multiply each element with an 0 or 1 as required

33

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

⊙

0
0
1
0
1
0
0

	 =

0
0

−3.2
0
4.9
0
0

Element-wise product
or

Hadamard product

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements
We can multiply each element with an 0 or 1 as required

34

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

⊙

0
0
1
0
1
0
0

	 =

0
0

−3.2
0
4.9
0
0

This binary mask acts as a gate that decides what information to keep and what to erase

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements
We can multiply each element with an 0 or 1 as required

35

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

⊙

0
0
1
0
1
0
0

	 =

0
0

−3.2
0
4.9
0
0

This binary mask acts as a gate that decides what information to keep and what to erase
Question: How do we get these gate values?

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements
We can multiply each element with an 0 or 1 as required

36

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

⊙

0
0
1
0
1
0
0

	 =

0
0

−3.2
0
4.9
0
0

This binary mask acts as a gate that decides what information to keep and what to erase
Question: How do we get these gate values?

Answer: A neural network predicts it

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements
We can multiply each element with an 0 or 1 as required

37

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

⊙

0
0
1
0
1
0
0

	 =

0
0

−3.2
0
4.9
0
0

The bad news: If the gate values were produced by a model, then
it will not be differentiable – all these values are discrete

The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements
We can multiply each element with an 0 or 1 as required

38

0.4
0.1
−3.2
−1.11
4.9
−0.21
0.4

⊙

0.1
0.01
0.5
0.1
0.9
0.2
0.4

	 =

0.04
0.001
−1.6
0.111
4. 41
−0.042
0.016

Instead of producing 0’s or 1’s, gate values are allowed to be between zero and one.
That is, they are the output of a sigmoid

Gated architectures

• A large family of models
– Two commonly used members

• Long Short-Term Memory (LSTM)
• Gated Recurrent Unit (GRU)

– And many variants

• Each time step includes a collection of gates that decide:
– What part of the state should be read
– What part of the state should be over-written
– What part of the update should be saved to the state

39

Long Short-term Memory (LSTM) Unit

• Each recurrent unit receives two vectors from the previous one
– Long term memory: 𝐜!"#
– Hidden state: 𝐡!"#

• The memory is the component that is updated in the linear fashion described
so far
– The hidden state encodes a non-linearity (as we will see)

• Using the current input 𝐱!, the LSTM cell performs the following operations:
1. Compute the new value of the memory 𝐜!
2. Compute the new value of the hidden state 𝐡!
3. Output = 𝐡!

40

LSTM: Updating the memory

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)

41

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: Updating the memory

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)

42

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Previous hidden state

Current input

LSTM: Updating the memory

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)

43

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Parameters

LSTM: Updating the memory

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)

44

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

At a high level, this is similar to the update in the simple RNN.

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
2. Compute what part of this update should be retained
– Called the input gate

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))

45

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
2. Compute what part of this update should be retained
– Called the input gate

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))

46

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Different
parameters from
the previous ones

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
2. Compute what part of this update should be retained
– Called the input gate

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))

47

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise sigmoid activation
– produces a vector with entries
between zero and one

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

3. Compute what part of the previous cell state should be forgotten
– Called the forget gate

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

48

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Different
parameters from
the previous ones

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

3. Compute what part of the previous cell state should be forgotten
– Called the forget gate

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

49

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise sigmoid activation
– produces a vector with entries
between zero and one

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

4. Compute the updated cell state
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

50

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise product between the
forget gate and the previous memory:
Decides what information from the
previous memory should be retained

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

4. Compute the updated cell state
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

51

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise product between the
input gate and the update computed
above: Decides what information from
the update should be retained

LSTM: Updating the memory

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

4. Compute the updated cell state
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

52

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Adding these gated components gives
the memory for this cell

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

53

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Now we can start computing the hidden state 𝐡!

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

54

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Now we can start computing the hidden state 𝐡!

Serves two roles:
1. Used to compute the cell update and the various gates
2. Becomes the output of the cell

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

5. Compute what part of the memory should contribute to the hidden
state
– Called the output gate

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

55

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

5. Compute what part of the memory should contribute to the hidden
state
– Called the output gate

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

56

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Different parameters
from the previous ones

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

5. Compute what part of the memory should contribute to the hidden
state
– Called the output gate

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

57

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise sigmoid activation
– produces a vector with entries
between zero and one

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

6. Compute the value of the hidden state
𝐡! = 𝐨⊙ tanh 𝐜!

58

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

6. Compute the value of the hidden state
𝐡! = 𝐨⊙ tanh 𝐜!

59

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise product of the
output gate and an activated
version of the memory

LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

6. Compute the value of the hidden state
𝐡! = 𝐨⊙ tanh 𝐜!

60

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

All elements of the hidden state
are between -1 and 1

LSTM: Computing the output

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
𝐡! = 𝐨⊙ tanh 𝐜!

7. Output of the cell = 𝐡,
We refer to the output as 𝐲!	in the previous lectures

61

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: All the updates together

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
𝐡! = 𝐨⊙ tanh 𝐜!

Let us look at these state updates more carefully

62

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

63

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

64

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Input, forget and output gates:
The differentiable gating
mechanism for the LSTM cell

LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

65

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Compute the proposed update
for the memory

LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

66

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Update the memory as the
combination of the previous
memory and the update
proposal

LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

67

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Linear update. Avoids vanishing
gradient problem

Update the memory as the
combination of the previous
memory and the update
proposal

LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

68

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Compute the hidden state by
gating a transformed version of
the memory

Parameters of the LSTM unit: W’s and b’s

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!

69

Inside a Long Short Term Memory unit

70
Figure from Chris Olah’s blog

Let us zoom in

Cell state

71
Figure from Chris Olah’s blog

Let us zoom in

The forget gate: Use the current input to decide what to erase in the cell state

72
Figure from Chris Olah’s blog

Let us zoom in

Create a new cell state and also a gate that decides what part of the newly
created cell state should be remembered

73
Figure from Chris Olah’s blog

Let us zoom in

New cell state = remaining part of previous state + newly computed information

74
Figure from Chris Olah’s blog

Let us zoom in

Finally, output = filtered version of the new cell state

75
Figure from Chris Olah’s blog

Why LSTMs?

• The LSTM cell is one of the most commonly used RNNs
– Avoids the vanishing and exploding gradient problem, and empirically successful

• … but can be complicated
– Requires a large number of parameters

• Do we need all this complexity?
– Are there other simpler gated architectures that avoid the vanishing gradient

problem?

76

Gated Recurrent Units (GRUs)

• An attempt at simplifying the LSTM cell

• What do we need?
– We need a linear update of the cell states

– We want a gating mechanism to control how to interpolate between the previous
state and the proposed update

– We want a gate to control what part of the previous state should be read

77

[Cho et al 2014]

Gated recurrent unit

78

Given the previous cell state 𝐬!"# and current input 𝐱!

Gated recurrent unit

1. Compute the values of two gates

79

Given the previous cell state 𝐬!"# and current input 𝐱!

Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
(+ 𝐱!𝐖)

(+ 𝐛()

80

Given the previous cell state 𝐬!"# and current input 𝐱!

Similar to the gates in the LSTM cell: uses element-wise sigmoid

Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
(+ 𝐱!𝐖)

(+ 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

81

Given the previous cell state 𝐬!"# and current input 𝐱!

Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
(+ 𝐱!𝐖)

(+ 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)

82

Given the previous cell state 𝐬!"# and current input 𝐱!

Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
(+ 𝐱!𝐖)

(+ 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)

83

Given the previous cell state 𝐬!"# and current input 𝐱!

Use the reset gate to selectively
read the previous state

Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
(+ 𝐱!𝐖)

(+ 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)

3. Compute the new cell state
𝒔! = 1 − 𝐳 ⊙ 𝐬!"# + 𝐳⊙	 8𝐬

84

Given the previous cell state 𝐬!"# and current input 𝐱!

Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
(+ 𝐱!𝐖)

(+ 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)

3. Compute the new cell state
𝒔! = 1 − 𝐳 ⊙ 𝐬!"# + 𝐳⊙	 8𝐬

85

Given the previous cell state 𝐬!"# and current input 𝐱!

Linear interpolation between the previous state and the current proposal

LSTM extensions: Peephole connections

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

The proposed update to the memory depends on the previous 𝐡,-., but
not on the previous 𝒄,-.

Same for all the gates as well

Peepholes: All the state updates depend on both 𝐡,-. and 𝐜,-.
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐜,-.𝐖A + 𝐱,𝐖2 + 𝐛)

86

LSTM extensions: Peephole connections

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

The proposed update to the memory depends on the previous 𝐡,-., but
not on the previous 𝒄,-.

Same for all the gates as well

Peepholes: All the state updates depend on both 𝐡,-. and 𝐜,-.

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐜,-.𝐖A + 𝐱,𝐖2 + 𝐛)

87

Empirical observations

• LSTM and GRU are only two ways to use gates to avoid vanishing and
exploding gradients

• Which one is better? Are there other variants that may be even better?

• [Jozefowicz et al 2015]: An empirical comparison of about 10,000
different variants of this idea on three different tasks
– There are some minor variants of GRU that appear to be better
– It appears that GRU slightly outperforms the LSTM
– LSTM with a forget gate bias set to 1 is also nearly as good

88

Empirical observations

• LSTM and GRU are only two ways to use gates to avoid vanishing and
exploding gradients

• Which one is better? Are there other variants that may be even better?

• [Jozefowicz et al 2015]: An empirical comparison of about 10,000
different variants of this idea on three different tasks
– There are some minor variants of GRU that appear to be better
– It appears that GRU slightly outperforms the LSTM
– LSTM with a forget gate bias set to 1 is also nearly as good

89

