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Non-linear state updates

The state updates for the vanilla RNN were non-linear
Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

The non-linear activation can lead to vanishing or exploding gradients
Vanishing if absolute values of elements of 𝛻𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	are strictly less than 1

Exploding if absolute values of elements of 𝛻𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	are strictly more than 1
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Non-linear state updates?

The state updates for the vanilla RNN were non-linear
Next state 𝐬! = 𝑔(𝐬!"#𝐖$	 + 𝐱!𝐖& + 𝐛)	

The non-linear activation can lead to vanishing or exploding gradients

What if the cell state was updated linearly at each time step?
𝐬! = 𝐬!"# + update'
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The state updates for the vanilla RNN were non-linear
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Naïve linear updates

𝐬! = 𝐬!"# + update$

No cascading multiplications due to the activations

How do we know what the update is? 
We can calculate it as a function of the input and the state using a small neural network
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Naïve linear updates

𝐬! = 𝐬!"# + update$

No cascading multiplications due to the activations

How do we know what the update is? 
We can calculate it as a function of the input and the state using a small neural network

update! = 𝑔(𝐬!"#𝐖( + 𝐱!𝐖& + 𝐛)	
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Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

This addresses vanishing gradient problem. Why?
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Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)
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Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random
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Naïve linear updates

𝐬! = 𝐬!"# + 𝑔(𝐬!"#𝐖% + 𝐱!𝐖& + 𝐛)

Why might this fail?

Consider what happens when we are starting to train
The parameters are random

⤷They can lead to random states
⤷…tend to be difficult to recover from
⤷…tend to lead to overflow 

What we need: More control of how states and inputs interact
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Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state updates
– How much of a computed update should be saved for the next time step?

– Intuition: Think of the state as a memory and think of the update as a write to the memory. 

– Goal: Depending on what our current state and the current input is, choose what to add to the 
save
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Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state updates
– How much of a computed update should be saved for the next time step?

– Intuition: Think of the state as a memory and think of the update as a write to the memory. 

– Goal: Depending on what our current state and the current input is, choose what part of the 
update to add to the state
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Fixing naïve linear updates

Need better control of input-state interactions

• Controlled state reading
– What part of the previous state should be used to make decisions about the current input?

– Intuition: Think of the state as a memory. Maybe to process certain inputs, we don’t need to 
access all the memory

– Goal: control what part of the input gets read
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Fixing naïve linear updates

Need better control of input-state interactions

• Controlled forgetting
– [Gers et al 2000]: Why should the state be remembered forever? 

– Intuition: Think of the state as a memory. We need a mechanism that allows unnecessary 
memories to be erased

– Goal: Control what part of the state gets erased
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Design goals for controlling state updates

We want mechanisms for:

1. Depending on what our current state and the current input is, choose what part of 
the update to add to the state

2. Control what part of the state gets read

3. Control what part of the state gets erased
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The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector
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The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements 
We can multiply each element with an 0 or 1 as required
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The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements 
We can multiply each element with an 0 or 1 as required
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The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements 
We can multiply each element with an 0 or 1 as required
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The answer: Gating

Everything we are dealing with is a vector
Our goal is to selectively read, write and erase elements of a vector

Example: Suppose we want to read only the shaded elements 
We can multiply each element with an 0 or 1 as required
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Gated architectures

• A large family of models
– Two commonly used members

• Long Short-Term Memory (LSTM)
• Gated Recurrent Unit (GRU)

– And many variants

• Each time step includes a collection of gates that decide:
– What part of the state should be read
– What part of the state should be over-written
– What part of the update should be saved to the state

39



Long Short-term Memory (LSTM) Unit

• Each recurrent unit receives two vectors from the previous one
– Long term memory: 𝐜!"#
– Hidden state: 𝐡!"#

• The memory is the component that is updated in the linear fashion described 
so far
– The hidden state encodes a non-linearity (as we will see)

• Using the current input 𝐱!, the LSTM cell performs the following operations:
1. Compute the new value of the memory 𝐜!
2. Compute the new value of the hidden state 𝐡!
3. Output = 𝐡!
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LSTM: Updating the memory 

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)
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LSTM: Updating the memory 

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)
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LSTM: Updating the memory 

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)
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LSTM: Updating the memory 

1. Compute the update to the memory
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖0 + 𝐛)

44

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

At a high level, this is similar to the update in the simple RNN.



LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
2. Compute what part of this update should be retained
– Called the input gate

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
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LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
2. Compute what part of this update should be retained
– Called the input gate

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
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LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
2. Compute what part of this update should be retained
– Called the input gate

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
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Element-wise sigmoid activation 
– produces a vector with entries 
between zero and one



LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

3. Compute what part of the previous cell state should be forgotten
– Called the forget gate

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

48

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Different 
parameters from 
the previous ones



LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
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LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

4. Compute the updated cell state
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜
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LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

4. Compute the updated cell state
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise product between the 
input gate and the update computed 
above: Decides what information from 
the update should be retained



LSTM: Updating the memory 

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)

4. Compute the updated cell state
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜
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Adding these gated components gives 
the memory for this cell



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜
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Now we can start computing the hidden state 𝐡!



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Now we can start computing the hidden state 𝐡!

Serves two roles:
1. Used to compute the cell update and the various gates
2. Becomes the output of the cell



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

5. Compute what part of the memory should contribute to the hidden 
state
– Called the output gate

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
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LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

5. Compute what part of the memory should contribute to the hidden 
state
– Called the output gate

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Different parameters 
from the previous ones



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

5. Compute what part of the memory should contribute to the hidden 
state
– Called the output gate

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise sigmoid activation 
– produces a vector with entries 
between zero and one



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

6. Compute the value of the hidden state
𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

6. Compute the value of the hidden state
𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Element-wise product of the 
output gate and an activated 
version of the memory



LSTM: Computing the hidden state

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

6. Compute the value of the hidden state
𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

All elements of the hidden state 
are between -1 and 1



LSTM: Computing the output

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
𝐡! = 𝐨⊙ tanh 𝐜!

7. Output of the cell = 𝐡,
We refer to the output as 𝐲!	in the previous lectures

61

Given previous memory 𝐜!"#and previous hidden state	𝐡!"#



LSTM: All the updates together

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)
𝐢 = 𝜎(𝐡!"#𝐖9

) + 𝐱!𝐖:
) + 𝐛))

𝐟 = 𝜎(𝐡!"#𝐖9
; + 𝐱!𝐖:

; + 𝐛;)
𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)
𝐡! = 𝐨⊙ tanh 𝐜!

Let us look at these state updates more carefully
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#



LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#



LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Input, forget and output gates: 
The differentiable gating 
mechanism for the LSTM cell



LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Compute the proposed update 
for the memory



LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Update the memory as the 
combination of the previous 
memory and the update 
proposal



LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Linear update. Avoids vanishing 
gradient problem

Update the memory as the 
combination of the previous 
memory and the update 
proposal



LSTM: All the updates together

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Given previous memory 𝐜!"#and previous hidden state	𝐡!"#

Compute the hidden state by 
gating a transformed version of 
the memory



Parameters of the LSTM unit: W’s and b’s

𝐢 = 𝜎(𝐡!"#𝐖9
) + 𝐱!𝐖:

) + 𝐛))
𝐟 = 𝜎(𝐡!"#𝐖9

; + 𝐱!𝐖:
; + 𝐛;)

𝐨 = 𝜎(𝐡!"#𝐖9
< + 𝐱!𝐖:

< + 𝐛<)

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

𝐜! = 𝐟⊙ 𝐜!"# + 𝐢⊙ 8𝐜

𝐡! = 𝐨⊙ tanh 𝐜!
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Inside a Long Short Term Memory unit

70
Figure from Chris Olah’s blog



Let us zoom in

Cell state

71
Figure from Chris Olah’s blog



Let us zoom in

The forget gate: Use the current input to decide what to erase in the cell state
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Figure from Chris Olah’s blog



Let us zoom in

Create a new cell state and also a gate that decides what part of the newly 
created cell state should be remembered
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Figure from Chris Olah’s blog



Let us zoom in

New cell state = remaining part of previous state + newly computed information
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Figure from Chris Olah’s blog



Let us zoom in

Finally, output = filtered version of the new cell state
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Figure from Chris Olah’s blog



Why LSTMs?

• The LSTM cell is one of the most commonly used RNNs
– Avoids the vanishing and exploding gradient problem, and empirically successful

• … but can be complicated
– Requires a large number of parameters

• Do we need all this complexity?
– Are there other simpler gated architectures that avoid the vanishing gradient 

problem?
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Gated Recurrent Units (GRUs)

• An attempt at simplifying the LSTM cell

• What do we need?
– We need a linear update of the cell states

– We want a gating mechanism to control how to interpolate between the previous 
state and the proposed update

– We want a gate to control what part of the previous state should be read 
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[Cho et al 2014]



Gated recurrent unit
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Given the previous cell state 𝐬!"# and current input 𝐱!



Gated recurrent unit

1. Compute the values of two gates
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Given the previous cell state 𝐬!"# and current input 𝐱!



Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
( + 𝐱!𝐖)

( + 𝐛()
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Given the previous cell state 𝐬!"# and current input 𝐱!

Similar to the gates in the LSTM cell: uses element-wise sigmoid



Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
( + 𝐱!𝐖)

( + 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed 
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)
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Given the previous cell state 𝐬!"# and current input 𝐱!



Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
( + 𝐱!𝐖)

( + 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed 
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)
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Given the previous cell state 𝐬!"# and current input 𝐱!



Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
( + 𝐱!𝐖)

( + 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed 
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)
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Given the previous cell state 𝐬!"# and current input 𝐱!

Use the reset gate to selectively 
read the previous state 



Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
( + 𝐱!𝐖)

( + 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed 
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)

3. Compute the new cell state 
𝒔! = 1 − 𝐳 ⊙ 𝐬!"# + 𝐳⊙	 8𝐬
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Given the previous cell state 𝐬!"# and current input 𝐱!



Gated recurrent unit

1. Compute the values of two gates
– Reset gate to decide what part of the previous state should be read to compute the update

𝐫 = 𝜎(𝐬!"#𝐖'
( + 𝐱!𝐖)

( + 𝐛()

– Update gate to decide how to interpolate between the previous cell state and the proposed 
update

𝐳 = 𝜎(𝐬!"#𝐖'
* + 𝐱!𝐖)

* + 𝐛*)

2. Compute the proposed update
8𝐬 = tanh((𝐫 ⊙ 𝐬!"#)𝐖' + 𝐱!𝐖) + 𝐛)

3. Compute the new cell state 
𝒔! = 1 − 𝐳 ⊙ 𝐬!"# + 𝐳⊙	 8𝐬
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Given the previous cell state 𝐬!"# and current input 𝐱!

Linear interpolation between the previous state and the current proposal



LSTM extensions: Peephole connections

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

The proposed update to the memory depends on the previous 𝐡,-., but 
not on the previous 𝒄,-.

Same for all the gates as well

Peepholes: All the state updates depend on both 𝐡,-. and 𝐜,-.
*𝐜 = tanh(𝐡,-.𝐖1 + 𝐜,-.𝐖A + 𝐱,𝐖2 + 𝐛)
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LSTM extensions: Peephole connections

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐱,𝐖2 + 𝐛)

The proposed update to the memory depends on the previous 𝐡,-., but 
not on the previous 𝒄,-.

Same for all the gates as well

Peepholes: All the state updates depend on both 𝐡,-. and 𝐜,-.

*𝐜 = tanh(𝐡,-.𝐖1 + 𝐜,-.𝐖A + 𝐱,𝐖2 + 𝐛)
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Empirical observations

• LSTM and GRU are only two ways to use gates to avoid vanishing and 
exploding gradients

• Which one is better? Are there other variants that may be even better?

• [Jozefowicz et al 2015]: An empirical comparison of about 10,000 
different variants of this idea on three different tasks
– There are some minor variants of GRU that appear to be better
– It appears that GRU slightly outperforms the LSTM
– LSTM with a forget gate bias set to 1 is also nearly as good

88
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• LSTM and GRU are only two ways to use gates to avoid vanishing and 
exploding gradients

• Which one is better? Are there other variants that may be even better?

• [Jozefowicz et al 2015]: An empirical comparison of about 10,000 
different variants of this idea on three different tasks
– There are some minor variants of GRU that appear to be better
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