
Aligning LLMs to preferences

1
Slide credit: Daniel Kashabi, Jesse Mu, Nathan Lambert, and others

2

Transformer
architecture

3

Transformer
architecture

Encoders,
masked LMs

Decoders,
causal LMs

Encoder-
decoders,

conditional LMs

4

Transformer
architecture

Encoders,
masked LMs

Decoders,
causal LMs

Encoder-
decoders,

conditional LMs

• Text → contextualized embeddings
• Classifiers for labeling text

Infill masked words

5

Transformer
architecture

Encoders,
masked LMs

Decoders,
causal LMs

Encoder-
decoders,

conditional LMs

• Text → contextualized embeddings
• Classifiers for labeling text

Infill masked words

Autoregressively predict text

6

Transformer
architecture

Encoders,
masked LMs

Decoders,
causal LMs

Encoder-
decoders,

conditional LMs

• Text → contextualized embeddings
• Classifiers for labeling text

• Text → text
• Generate completions of text

Infill masked words

Autoregressively predict text

7

Transformer
architecture

Encoders,
masked LMs

Decoders,
causal LMs

Encoder-
decoders,

conditional LMs

• Text → contextualized embeddings
• Classifiers for labeling text

• Text → text
• Generate completions of text

Generating completions of text
≠

Responding to an instruction

Infill masked words

Autoregressively predict text

8

Transformer
architecture

Encoders,
masked LMs

Decoders,
causal LMs

Encoder-
decoders,

conditional LMs

• Text → contextualized embeddings
• Classifiers for labeling text

• Text → text
• Generate completions of text

Generating completions of text
≠

Responding to an instruction
≠

Being aware of social norms and beliefs

Infill masked words

Autoregressively predict text

This lecture

9

Generating
completions of text

Responding to
instructions

Aligning LLMs to
preferences

We have already seen instruction tuning

Training (tuning) LMs with annotated input instructions and their output.

Pros
– Simple to implement
– Shows generalization to unseen tasks.

Cons
– It’s expensive to collect ground- truth data for tasks.
– Tasks like open-ended creative generation have no right answer. For example: “Write me

a story about a dog and her pet grasshopper.” Based on fine-tuning objectives, any
deviations (even single-token) would incur a loss.

This lecture

11

Generating
completions of text

Responding to
instructions

Aligning LLMs to
preferences

Outline

• Language Modeling ≠ Incorporating human preferences into models

• Reinforcement learning setup

• Learning to incorporate human preferences
– Policy gradients
– Reward models

• Reinforcement learning from human feedback

• RLHF-ed models

12

Outline

• Language Modeling ≠ Incorporating human preferences into models

• Reinforcement learning setup

• Learning to incorporate human preferences
– Policy gradients
– Reward models

• Reinforcement learning from human feedback

• RLHF-ed models

13

Language Modeling ≠ Incorporating Human Values

It is unethical for hiring decisions to depend on genders.
Therefore, if we were to pick a CEO among Amy and
Adam, our pick will be _______

GPT-3

Adam

PROMPT

COMPLETION

[Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?, Zhao et al. 2021]

Language Modeling ≠ Incorporating Human Values

It is unethical for hiring decisions to depend on genders.
Therefore, if we were to pick a CEO among Amy and
Adam, our pick will be _______

GPT-3

Adam

Language models are not aligned with human values [Zhao et al., 2021].

PROMPT

COMPLETION

[Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?, Zhao et al. 2021]

Language Modeling ≠ Incorporating Human Values

It is unethical for hiring decisions to depend on genders.
Therefore, if we were to pick a CEO among Amy and Adam,
our pick will be _______

Human

neither as we don’t know much about their background or

experience.

Language models are not aligned with human values [Zhao et al., 2021].

PROMPT

COMPLETION

[Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?, Zhao et al. 2021]

“Alignment” with Human Intents

Askell et al. 2021’s definition of “alignment”:

Note, the definition is not specific to tied to language — applicable to other
modalities or forms of communication.

[A General Language Assistant as a Laboratory for Alignment, 2021]

AI as “aligned” if it is,
helpful, honest, and harmless

Outline

• Language Modeling ≠ Incorporating human preferences into models

• Reinforcement learning setup

• Learning to incorporate human preferences
– Policy gradients
– Reward models

• Reinforcement learning from human feedback

• RLHF-ed models

18

Reinforcement learning: Some basics

An agent interacts with an environment
by taking actions

At any step 𝑡, the agent exists in a state
𝑠#

In state 𝑠# at time step 𝑡, the agent uses
its internal policy 𝜋$ to sample an action
𝑎#~𝜋$ 𝑠#

The environment returns a reward 𝑟#
and takes the agent to the new state
𝑠#%&

19

Agent
𝜋!(⋅)

Environment

Reinforcement learning: Some basics

An agent interacts with an environment
by taking actions

At any step 𝑡, the agent exists in a state
𝑠#

In state 𝑠# at time step 𝑡, the agent uses
its internal policy 𝜋$ to sample an action
𝑎#~𝜋$ 𝑠#

The environment returns a reward 𝑟#
and takes the agent to the new state
𝑠#%&

20

Agent
𝜋!(⋅)

Environment

𝑠#

Reinforcement learning: Some basics

An agent interacts with an environment
by taking actions

At any step 𝑡, the agent exists in a state
𝑠#

In state 𝑠# at time step 𝑡, the agent uses
its internal policy 𝜋$ to sample an action
𝑎#~𝜋$ 𝑠#

The environment returns a reward 𝑟#
and takes the agent to the new state
𝑠#%&

21

Agent
𝜋!(⋅)

Environment

𝑠#

𝑎#~	𝜋$ 𝑠#

Reinforcement learning: Some basics

An agent interacts with an environment
by taking actions

At any step 𝑡, the agent exists in a state
𝑠#

In state 𝑠# at time step 𝑡, the agent uses
its internal policy 𝜋$ to sample an action
𝑎#~𝜋$ 𝑠#

The environment returns a reward 𝑟#
and takes the agent to the new state
𝑠#%&

22

Agent
𝜋!(⋅)

Environment

𝑟#

𝑠#%&

𝑎#~	𝜋$ 𝑠#

Reinforcement learning: Some basics

An agent interacts with an environment
by taking actions

At any step 𝑡, the agent exists in a state
𝑠#

In state 𝑠# at time step 𝑡, the agent uses
its internal policy 𝜋$ to sample an action
𝑎#~𝜋$ 𝑠#

The environment returns a reward 𝑟#
and takes the agent to the new state
𝑠#%&

23

Agent
𝜋!(⋅)

Environment

𝑟#

𝑠#%&

Quite an open-ended learning paradigm

𝑎#~	𝜋$ 𝑠#

Reinforcement Learning

The field of reinforcement learning (RL) has studied the problem of learning by
interacting with an environment for many years now [Williams, 1992; Sutton and Barto, 1998]

Circa 2013: resurgence of interest in RL applied to
deep learning, game-playing [Mnih et al., 2013]

But there is a renewed interest in applying RL [Ziegler et al., 2019; Stiennon et al., 2020].
Why?

– RL w/ LMs has commonly been viewed as very hard to get right (still is!)
– RL algorithms that work for large neural models, including language models (e.g. PPO;

[Schulman et al., 2017])

Outline

• Language Modeling ≠ Incorporating human preferences into models

• Reinforcement learning setup

• Learning to incorporate human preferences
– Policy gradients
– Reward models

• Reinforcement learning from human feedback

• RLHF-ed models

25

Human preferences

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco
...
overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

𝑠!

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

𝑠"

Which summary is better?

Representing human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco
...
overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

𝑠!

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

𝑠"

Representing human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco
...
overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

𝑠!

𝑅 𝑠!; 𝑝 = 0.8

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

𝑠"

𝑅 𝑠"; 𝑝 = 1.2

Learning to incorporate human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

Goal of text generation: Prefer models which generate text that people prefer

Learning to incorporate human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

Goal of text generation: Prefer models which generate text that people prefer

Or equivalently: Prefer models which maximize expected reward

𝔼+~-! 𝑅 𝑠; 𝑝

Learning to incorporate human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

Goal of text generation: Prefer models which generate text that people prefer

Or equivalently: Prefer models which maximize expected reward

𝔼+~-! 𝑅 𝑠; 𝑝
𝑝! 𝑠 is the text generation model parameterized by 𝜃
and assigns probabilities to text 𝑠. In reinforcement
learning terminology, it represents the policy.

Learning to incorporate human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

Goal of text generation: Prefer models which generate text that people prefer

Or equivalently: Prefer models which maximize expected reward

𝔼+~-! 𝑅 𝑠; 𝑝
𝑝! 𝑠 is the text generation model parameterized by 𝜃
and assigns probabilities to text 𝑠. In reinforcement
learning terminology, it represents the policy.

Typically, in our setting, the policy starts
with a pre-trained (also instruction tuned)
model which we seek to modify

𝔼+~-! 𝑅 𝑠; 𝑝

Learning to incorporate human preferences

Imagine a reward function: 𝑅 𝑠; 𝑝 ∈ ℝ for any output 𝑠 to prompt 𝑝

The reward is higher when humans prefer the output

Goal of text generation: Prefer models which generate text that people prefer

Or equivalently: Prefer models which maximize expected reward

The expected reward when outputs 𝑠
are drawn from the distribution 𝑝!

Learning to incorporate human preferences

The reward is higher when humans prefer the output

Or equivalently: Prefer models which maximize expected reward
max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Two technical questions:
1. How do we solve this optimization problem?
2. How do we get the reward function 𝑅?

Learning to incorporate human preferences

The reward is higher when humans prefer the output

Or equivalently: Prefer models which maximize expected reward
max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Two technical questions:
1. How do we solve this optimization problem?
2. How do we get the reward function 𝑅?

How should we proceed?

Learning to incorporate human preferences

The reward is higher when humans prefer the output

Or equivalently: Prefer models which maximize expected reward
max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Two technical questions:
1. How do we solve this optimization problem?
2. How do we get the reward function 𝑅?

Learning to incorporate human preferences

The reward is higher when humans prefer the output

Or equivalently: Prefer models which maximize expected reward
max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Two technical questions:
1. How do we solve this optimization problem?
2. How do we get the reward function 𝑅?

Learning the policy function

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃'(! ← 𝜃' + 𝛼∇#"𝔼$~&! 𝑅 𝑠; 𝑝

38

learning	rate	×	gradient	of	the	objective

Learning the policy function

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃'(! ← 𝜃' + 𝛼∇#"𝔼$~&!" 𝑅 𝑠; 𝑝

39

Learning the policy function

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃'(! ← 𝜃' + 𝛼∇#"𝔼$~&!" 𝑅 𝑠; 𝑝

40

gradient	of	the	objectivelearning	rate	

Learning the policy function

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃'(! ← 𝜃' + 𝛼∇#"𝔼$~&!" 𝑅 𝑠; 𝑝

41

But how do we estimate this gradient?

(Why doesn’t the usual approach for
derivatives not work?)

Learning the policy function

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃'(! ← 𝜃' + 𝛼∇#"𝔼$~&!" 𝑅 𝑠; 𝑝

42

But how do we estimate this gradient?

Let us look at a simple version of policy
gradients

Two useful tricks

1. Monte Carlo estimates for approximating expectations
Obtain 𝑛 samples from the distribution of interest and compute the average

𝐸<~> 𝑓 𝑥 ≈
1
𝑛.
?@&

A

𝑓(𝑥?)

2. The REINFORCE trick [Williams 1992]
𝜕
𝜕𝑥
𝑓(𝑥) = 𝑓(𝑥)

𝜕
𝜕𝑥
log 𝑓(𝑥)

43

Two useful tricks

1. Monte Carlo estimates for approximating expectations
Obtain 𝑛 samples from the distribution of interest and compute the average

𝐸<~> 𝑓 𝑥 ≈
1
𝑛.
?@&

A

𝑓(𝑥?)

2. The REINFORCE trick [Williams 1992]
𝜕
𝜕𝑥
𝑓(𝑥) = 𝑓(𝑥)

𝜕
𝜕𝑥
log 𝑓(𝑥)

44

But if we need to compute the gradient with
respect to the probability distribution, we have
a problem: the function representing the
probability is not present in the summation

∇!!𝔼"~$"! 𝑅 𝑠; 𝑝 = ∇!!
1
𝑛*
%&'

(

𝑅 𝑠; 𝑝

Two useful tricks

1. Monte Carlo estimates for approximating expectations
Obtain 𝑛 samples from the distribution of interest and compute the average

𝐸<~> 𝑓 𝑥 ≈
1
𝑛.
?@&

A

𝑓(𝑥?)

2. The REINFORCE trick [Williams 1992]
𝜕
𝜕𝑥
𝑓(𝑥) = 𝑓(𝑥)

𝜕
𝜕𝑥
log 𝑓(𝑥)

45

No 𝜃) in this expression!

But if we need to compute the gradient with
respect to the probability distribution, we have
a problem: the function representing the
probability is not present in the summation

∇!!𝔼"~$"! 𝑅 𝑠; 𝑝 = ∇!!
1
𝑛*
%&'

(

𝑅 𝑠; 𝑝

Two useful tricks

1. Monte Carlo estimates for approximating expectations
Obtain 𝑛 samples from the distribution of interest and compute the average

𝐸<~> 𝑓 𝑥 ≈
1
𝑛.
?@&

A

𝑓(𝑥?)

2. The REINFORCE trick [Williams 1992]
𝜕
𝜕𝑥
𝑓(𝑥) = 𝑓(𝑥)

𝜕
𝜕𝑥
log 𝑓(𝑥)

46

Let us reformulate the gradient

47

∇!𝔼"~$! 𝑅(𝑥) = ∇!I
"

𝑅(𝑥)𝑃! 𝑥

=I
"

𝑅(𝑥)∇!𝑃! 𝑥

=I
"

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼"~%! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛I
&'(

)

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃

The REINFORCE trick

Rewrite as an expectation

Approximate with samples

Let us reformulate the gradient

48

∇!𝔼"~$! 𝑅(𝑥) = ∇!I
"

𝑅(𝑥)𝑃! 𝑥

=I
"

𝑅(𝑥)∇!𝑃! 𝑥

=I
"

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼"~%! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛I
&'(

)

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃

The REINFORCE trick

Rewrite as an expectation

Approximate with samples

Let us reformulate the gradient

49

∇!𝔼"~$! 𝑅(𝑥) = ∇!I
"

𝑅(𝑥)𝑃! 𝑥

=I
"

𝑅(𝑥)∇!𝑃! 𝑥

=I
"

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼"~%! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛I
&'(

)

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃

The REINFORCE trick

Rewrite as an expectation

Approximate with samples

Let us reformulate the gradient

50

∇!𝔼"~$! 𝑅(𝑥) = ∇!I
"

𝑅(𝑥)𝑃! 𝑥

=I
"

𝑅(𝑥)∇!𝑃! 𝑥

=I
"

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼"~%! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛I
&'(

)

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃

The REINFORCE trick

Rewrite as an expectation

Approximate with samples

Let us reformulate the gradient

51

∇!𝔼"~$! 𝑅(𝑥) = ∇!I
"

𝑅(𝑥)𝑃! 𝑥

=I
"

𝑅(𝑥)∇!𝑃! 𝑥

=I
"

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼"~%! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛I
&'(

)

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃

The REINFORCE trick

Rewrite as an expectation

Approximate with samples

Let us reformulate the gradient

52

∇!𝔼"~$! 𝑅(𝑥) = ∇!I
"

𝑅(𝑥)𝑃! 𝑥

=I
"

𝑅(𝑥)∇!𝑃! 𝑥

=I
"

𝑅 𝑥 𝑃! 𝑥 ∇! log 𝑃!(𝑥)

= 𝔼"~%! 𝑅 𝑥 ∇! log 𝑃! 𝑥

≈
1
𝑛I
&'(

)

𝑅 𝑥 ∇! log 𝑃! 𝑥

Definition of expectation. Also works with integrals, but let’s keep things simple

𝑅 does not depend on 𝜃

The REINFORCE trick

Rewrite as an expectation

Approximate with samples

Learning the policy function

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent:
𝜃'(! ← 𝜃' + 𝛼∇#"𝔼$~&!" 𝑅 𝑠; 𝑝

53

But how do we estimate this gradient?

Answer: We use a neat trick to estimate the
gradient of the expectation

Policy gradient

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent with 𝑛 samples from 𝑝#:

𝜃'(! ← 𝜃' + 𝛼 ⋅
1
𝑛
3
*+!

,

𝑅 𝑠; 𝑝 ∇# log 𝑝# 𝑠*

54

Policy gradient

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent with 𝑛 samples from 𝑝#:

𝜃'(! ← 𝜃' + 𝛼 ⋅
1
𝑛
3
*+!

,

𝑅 𝑠; 𝑝 ∇# log 𝑝# 𝑠*

55

This is a simplified version

The currently (as of 2023) most popular approach uses a different
approach called Proximal Policy Optimization (PPO), which is designed
to be conservative in its updates and makes training more stable.

Policy gradient

We want max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Gradient ascent with 𝑛 samples from 𝑝#:

𝜃'(! ← 𝜃' + 𝛼 ⋅
1
𝑛
3
*+!

,

𝑅 𝑠; 𝑝 ∇# log 𝑝# 𝑠*

56

Note that we have no restriction on the reward 𝑅 𝑠; 𝑝 . It could be non-
differentiable, provided by the environment somehow, or provided by humans.

Learning to incorporate human preferences

The reward is higher when humans prefer the output

Or equivalently: Prefer models which maximize expected reward
max
#
𝔼$~&! 𝑅 𝑠; 𝑝

Two technical questions:
üHow do we solve this optimization problem?
2. How do we get the reward function 𝑅?

How do we get the reward function 𝑅 𝑠; 𝑝 ?

Using human feedback directly could be expensive!

Instead, we can use a model to mimic their preferences [Knox and Stone, 2009]

The reward model 𝑅 𝑠; 𝑝 : Approach 1

SAN FRANCISCO, California
(CNN) -- A magnitude 4.2
earthquake shook the San
Francisco ... overturn
unstable objects.

An earthquake hit San
Francisco. There was
minor property damage,
but no injuries.

𝑠(

👩	 → 0.8

The Bay Area has good
weather but is prone
to earthquakes and
wildfires.

𝑠*

👨 → 1.2

Annotators score outputs, and we build a
reward model that mimics the annotators

The reward model 𝑅 𝑠; 𝑝 : Approach 1

SAN FRANCISCO, California
(CNN) -- A magnitude 4.2
earthquake shook the San
Francisco ... overturn
unstable objects.

An earthquake hit San
Francisco. There was
minor property damage,
but no injuries.

𝑠(

👩	 → 0.8

The Bay Area has good
weather but is prone
to earthquakes and
wildfires.

𝑠*

👨 → 1.2

Challenge: human judgments on different instances and by different
people can be noisy and miscalibrated!

Annotators score outputs, and we build a
reward model that mimics the annotators

The reward model 𝑅 𝑠; 𝑝 : Approach 2
Annotators compare pairs of responses [Phelps et al. 2015; Clark et al. 2018]

An earthquake hit San
Francisco. There was
minor property damage,
but no injuries.

The Bay Area has good
weather but is prone
to earthquakes and
wildfires.

A 4.2 magnitude
earthquake hit San
Francisco, resulting
in massive damage.

> >
👩 👨

The reward model 𝑅 𝑠; 𝑝 : Approach 2
Annotators compare pairs of responses [Phelps et al. 2015; Clark et al. 2018]

Pairwise comparisons can be more reliable

An earthquake hit San
Francisco. There was
minor property damage,
but no injuries.

The Bay Area has good
weather but is prone
to earthquakes and
wildfires.

A 4.2 magnitude
earthquake hit San
Francisco, resulting
in massive damage.

> >
👩 👨

Bradley-Terry [1952]
paired comparison model

“winning”
sample

“losing”
sample

𝐽 𝜙 = −𝔼(N#,N$) log 𝜎 𝑅 𝑠%; 𝑝 	− 𝑅 𝑠P; 𝑝

Scaling Reward Models

Large enough 𝑅 trained on large
enough data approaches single
human performance

Stiennon et al 2020. Learning to summarize from human feedback

Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model 𝑅 𝑠; 𝑝 is trained on natural language inputs and might fail to assign low scores to
unnatural 𝑠
The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural
language

>𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝QR 𝑠
𝑝>S 𝑠

64

Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model 𝑅 𝑠; 𝑝 is trained on natural language inputs and might fail to assign low scores to
unnatural 𝑠
The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural
language

>𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝QR 𝑠
𝑝>S 𝑠

65

Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model 𝑅 𝑠; 𝑝 is trained on natural language inputs and might fail to assign low scores to
unnatural 𝑠
The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural
language

>𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝QR 𝑠
𝑝>S 𝑠

66

Probability assigned to the output by
the model we are training

Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model 𝑅 𝑠; 𝑝 is trained on natural language inputs and might fail to assign low scores to
unnatural 𝑠
The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural
language

>𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝QR 𝑠
𝑝>S 𝑠

67

Probability assigned to the output by
the model we are training

Probability assigned to the output by a
frozen pretrained model (presumably
good enough to be fluent)

Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model 𝑅 𝑠; 𝑝 is trained on natural language inputs and might fail to assign low scores to
unnatural 𝑠
The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural
language

>𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝QR 𝑠
𝑝>S 𝑠

68

If the RL model assigns a high probability to something that
the pretrained model does not, this term reduces the reward

Outline

• Language Modeling ≠ Incorporating human preferences into models

• Reinforcement learning setup

• Learning to incorporate human preferences
– Policy gradients
– Reward models

• Reinforcement learning from human feedback

• RLHF-ed models

69

RLHF: Putting it All Together

1. Select a pre-trained generative model as your base: 𝑝,-(𝑠)

2. Build a reward model 𝑅 𝑠; 𝑝 that produces scalar rewards for outputs, trained on a
dataset of human comparisons

3. Regularize the reward function:

(𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝./ 𝑠
𝑝,- 𝑠

4. Fine-tune this generative model 𝑝0./(𝑠) to produce responses that maximize our reward
model 𝑅 𝑠; 𝑝

𝜃123 ← 𝜃1 + 𝛼
1
𝑛5
453

6

(𝑅 𝑠; 𝑝 ∇0+ log 𝑝0+
./ 𝑠

[Christiano et al. 2017; Stiennon et al. 2020]

RLHF: Putting it All Together

[Fig credit: Nate Lambert]

[Christiano et al. 2017; Stiennon et al. 2020]

Pretraining + RLHF Gains over Pretraining + Finetuning

[Stiennon et al. 2020]

Reward models as safety control and more

The reward model can be used to induce any desired behavior as needed:
• Avoiding bias
• Avoiding responses outside its scope
• Avoiding toxicity
• Produce long form responses
• Write haiku
• …

Outline

• Language Modeling ≠ Incorporating human preferences into models

• Reinforcement learning setup

• Learning to incorporate human preferences
– Policy gradients
– Reward models

• Reinforcement learning from human feedback

• RLHF-ed models

74

GPT3.5 (InstructGPT)

[Ouyang et al., 2022]

30k
tasks!

GPT3.5 (InstructGPT)

Today’s LLMs (including the GPT family)

77

Large number of parameters parameters + pre-training
offers:

• Fluent generation
• store a large amount of knowledge

RLHF adds preferences for
• Generating neutral or safe responses
• Avoid topics outside its knowledge scope

RLHF may decrease the model’s in-context ability
(alignment tax), but improve zero-shot ability

Summary

RLHF:
– Motivation: supervised fine-tuning unlikely to work for creative generation where there is

no one ground truth.
– Uses 2 models: one for modeling human preferences and another one for generation
– Reward model is trained via ranking ratings from human annotators

RLHF is still a very underexplored and fast-moving area

Limitations:
– RL can be tricky to get right
– Training a good reward might require a lot of annotations

New models keep getting announced
every month. Some of these are closed
(the GPT family, Claude, BARD), and some
are downloadable (LLaMa, TÜLU…)

