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Generating completions of text

+
Responding to an instruction

=+
Being aware of social norms and beliefs
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We have already seen instruction tuning

Training (tuning) LMs with annotated input instructions and their output.

Pros
— Simple to implement
— Shows generalization to unseen tasks.

Cons
— |t’s expensive to collect ground- truth data for tasks.

— Tasks like open-ended creative generation have no right answer. For example: “Write me
a story about a dog and her pet grasshopper.” Based on fine-tuning objectives, any
deviations (even single-token) would incur a loss.
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Language Modeling # Incorporating Human Values

PROMPT [t is unethical for hiring decisions to depend on genders.
Therefore, if we were to pick a CEO among Amy and
Adam, our pick will be

COMPLETION
GPT-3

Adam

[Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?, Zhao et al. 2021]
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Language Modeling # Incorporating Human Values

PROMPT [t is unethical for hiring decisions to depend on genders.
Therefore, if we were to pick a CEO among Amy and Adam,
our pick will be

COMPLETION
Human

neither as we don’t know much about their background or

experience.

[ Language models are not aligned with human values [Zhao et al., 2021]. ]

[Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?, Zhao et al. 2021]



“Alignment” with Human Intents

Askell et al. 2021’s definition of “alignment”:

Al as “aligned” if it is,
helpful, honest, and harmless

Note, the definition is not specific to tied to language — applicable to other
modalities or forms of communication.

[A General Language Assistant as a Laboratory for Alignment, 2021]
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Reinforcement learning: Some basics

An agent interacts with an environment
by taking actions

At any step t, the agent exists in a state
St

In state sy at time step t, the agent uses
its internal policy mg to sample an action

a.~mg(se)

The environment returns a reward 7
and takes the agent to the new state

St+1

Agent

o ()

Quite an open-ended learning paradigm

a.~ my(se)
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Reinforcement Learning

The field of reinforcement learning (RL) has studied the problem of learning by
interacting with an environment for many years now [williams, 1992; Sutton and Barto, 1998]

. . . . Ceo
Circa 2013: resurgence of interest in RL applied to 9‘ q
deep learning, game-playing (mnin et al., 2013] O.%.o A‘ phaGO

But there is a renewed interest in applying RL [ziegler et al., 2019; Stiennon et al., 2020].
Why?
— RL w/ LMs has commonly been viewed as very hard to get right (still is!)

— RL algorithms that work for large neural models, including language models (e.g. PPO;
[Schulman et al,, 2017])
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Human preferences

SAN FRANCISCO, An earthquake hit The Bay Area has
California (CNN) -- San Francisco. good weather but is
A magnitude 4.2 There was minor prone to
earthquake shook the property damage, earthquakes and
San Francisco but no injuries. wildfires.

S1 S2

overturn unstable
objects.

Which summary is better?
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Representing human preferences

Imagine a reward function: R(s; p) € R for any output s to prompt p

The reward is higher when humans prefer the output

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco

overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

S1

R(s1;p) = 0.8

The Bay Area has
good weather but 1is
prone to
earthquakes and
wildfires.

S2

R(sz;p) = 1.2
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Learning to incorporate human preferences

Imagine a reward function: R(s; p) € R for any output s to prompt p

The reward is higher when humans prefer the output
Goal of text generation: Prefer models which generate text that people prefer

Or equivalently: Prefer models which maximize expected reward

4 n
S~P@ [R (S, p)]
(s) is the text generation model parameterized by 6 Typically, in our setting, the policy starts
and assigns probabilities to text s. In reinforcement with a pre-trained (also instruction tuned)

learning terminology, it represents the policy. model which we seek to modify



Learning to incorporate human preferences

Imagine a reward function: R(s; p) € R for any output s to prompt p

The reward is higher when humans prefer the output
Goal of text generation: Prefer models which generate text that people prefer

Or equivalently: Prefer models which maximize expected reward

bs~D g [R(s;p)]

The expected reward when outputs s |
are drawn from the distribution
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Learning the policy function

We want max E._, [R(s;p)]

Gradient ascent:
— -+ learning rate X gradient of the objective
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Learning the policy function

We want max E._, [R(s;p)]

Gradient ascent:

« 0 +avV, E,,, [R(s;p)]

’_1

learning rate

\—\

gradient of the objective
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Learning the policy function

We want max E._, [R(s;p)]

Gradient ascent:
<0, +aVyEs., [R(s;p)]

But how do we estimate this gradient?

(Why doesn’t the usual approach for
derivatives not work?)

41



Learning the policy function

We want max E._, [R(s;p)]

Gradient ascent:
<0, +aVyEs., [R(s;p)]

But how do we estimate this gradient?

Let us look at a simple version of policy
gradients

42



Two useful tricks

1. Monte Carlo estimates for approximating expectations

Obtain n samples from the distribution of interest and compute the average

Eep [f0O] = Zf(xa
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Two useful tricks

1. Monte Carlo estimates for approximating expectations

Obtain n samples from the distribution of interest and compute the average

Exoplf(x)] =

Zf(xa

But if we need to compute the gradient with
respect to the probability distribution, we have
a problem: the function representing the
probability is not present in the summation

Vo By, [R(5 D) = ZR(S p)

No 6, in this expression!
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Two useful tricks

1. Monte Carlo estimates for approximating expectations

Obtain n samples from the distribution of interest and compute the average

Eeep [f0O] = Zf(xa

2. The REINFORCE trick [Williams 1992]
f () =7 (*) 72 10g f(x)
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Let us reformulate the gradient

VH IE:x~P9 [R (X)]
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Let us reformulate the gradient

Vg IEx~P9 [R (x)] = Vp z R(X)P‘9 (x) Definition of expectation. Also works with integrals, but let’s keep things simple
X
— z R(x)VyPg (x) R does not depend on 6
X

_ z R(x)P(x)Vg log Py(x)  The REINFORCE trick
X

= ]Ex~P9 [R (x)Vg log Py (x)] Rewrite as an expectation
n
~ lz R(X)Vg ]og Py (X) Approximate with samples
n
=1
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Learning the policy function

We want max E._, [R(s;p)]

Gradient ascent:
<0, +aVyEs., [R(s;p)]

But how do we estimate this gradient?

Answer: We use a neat trick to estimate the
gradient of the expectation

53



Policy gradient

We want max E._, [R(s;p)]

Gradient ascent with n samples from

n
1
— +a~EZR(S;P)V9 log vy (s;)
i=1
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Policy gradient

We want max E._, [R(s;p)]

Gradient ascent with n samples from

n
1
— +a~EZR(S;P)V9 log vy (s;)
i=1

This is a simplified version

The currently (as of 2023) most popular approach uses a different
approach called Proximal Policy Optimization (PPO), which is designed
to be conservative in its updates and makes training more stable.
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Policy gradient

We want max E._, [R(s;p)]

Gradient ascent with n samples from

n
1
— +a.EzR(s;p)V8 log vy (s;)
i=1

Note that we have no restriction on the reward R(s; p). It could be non-
differentiable, provided by the environment somehow, or provided by humans.
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Learning to incorporate human preferences

The reward is higher when humans prefer the output

Or equivalently: Prefer models which maximize expected reward
max Eg._, [R(s; p)]

Two technical questions:

v How do we solve this optimization problem?
2. How do we get the reward function R?



How do we get the reward function R(s; p)?

Using human feedback directly could be expensive!

Instead, we can use a model to mimic their preferences [Knox and Stone, 2009]



The reward model R(s; p): Approach 1

Annotators score outputs, and we build a
reward model that mimics the annotators

SAN FRANCISCO, California
(CNN) -- A magnitude 4.2
earthquake shook the San
Francisco ... overturn
unstable objects.

An earthquake hit San
Francisco. There was
minor property damage,
but no injuries.

S1

- 0.8

The Bay Area has good
weather but is prone
to earthquakes and
wildfires.

S2

-1



The reward model R(s; p): Approach 1

Annotators score outputs, and we build a
reward model that mimics the annotators

SAN FRANCISCO, California An earthquake hit San The Bay Area has good
(CNN) -- A magnitude 4.2 Francisco. There was weather but 1s prone
earthquake shook the San minor property damage, to earthquakes and
Francisco ... overturn but no injuries. wildfires.
unstable objects. S1 S2

@& - 0.8 ®- 12

Challenge: human judgments on different instances and by different
people can be noisy and miscalibrated!



The reward model R(s; p): Approach 2

Annotators compare pairs of responses [Phelps et al. 2015; Clark et al. 2018]

Francisco. There was

earthquake hit San

An earthquake hit San A 4.2 magnitude o
>

minor property damage,
but no injuries.

>

Francisco, resulting
in massive damage.

The Bay Area has good
weather but i1is prone
to earthquakes and
wildfires.



The reward model R(s; p): Approach 2

Annotators compare pairs of responses [Phelps et al. 2015; Clark et al. 2018]

An earthquake hit San A 4.2 magnitude o The Bay Area has good
Francisco. There was earthquake hit San weather but 1s prone
minor property damage, > Francisco, resulting > to earthquakes and
but no injuries. in massive damage. wildfires.
J(p) = —IE(S+,S—)[log 0(R(S+;p) = R(s‘;p))] Bradley-Terry [1952]
7 X paired comparison model
“winning” “losing”
sample sample

Pairwise comparisons can be more reliable



Scaling Reward Models

Large enough R trained on large
enough data approaches single
human performance

Validation accuracy

108 109 1070
Model size

Stiennon et al 2020. Learning to summarize from human feedback



Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model R(s; p) is trained on natural language inputs and might fail to assign low scores to
unnatural s

The policy gradient optimizer seeks to maximize its reward
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Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality

text
The reward model R(s; p) is trained on natural language inputs and might fail to assign low scores to
unnatural s
The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural

language Probability assigned to the output by
the model we are training

RL
R(s;p) = R(s; p) — Blog (IIZP_TEE;)

66



Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality

text

The reward model R(s; p) is trained on natural language inputs and mi
unnatural s

The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes out;

ght fail to assign low scores to

uts that deviate from natural

language
’7

Probability assigned to the output by
the model we are training

pht (s))

R(s;p) = R(s; p) — Blog <ppT( 5

|

Probability assigned to the output by a
frozen pretrained model (presumably

good enough to be fluent)
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Regularizing with pretrained model

Problem: If we train our language model to optimize the reward, it could do so by generating poor quality
text

The reward model R(s; p) is trained on natural language inputs and might fail to assign low scores to
unnatural s

The policy gradient optimizer seeks to maximize its reward

Solution: modify the reward with a regularization term that penalizes outputs that deviate from natural
language

ph(s)
pPT(S)>

If the RL model assigns a high probability to something that
the pretrained model does not, this term reduces the reward

R(s;p) = R(s;p) — ﬁlog<
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RLHF: Putting it All Together

[Christiano et al. 2017; Stiennon et al. 2020]

1. Select a pre-trained generative model as your base: pfT (s)

2. Build a reward model R(s; p) that produces scalar rewards for outputs, trained on a
dataset of human comparisons

3. Regularize the reward function:

RL
R(s;p) = R(s;p) = Blog (nggD

4. Fine-tune this generative model ng(S) to produce responses that maximize our reward
model R(s; p)

n
1 _
01 < 0, + QEZ R(s; p) Vo, logpgtL(S)
i=1



RLHF: Putting it All Together

[Christiano et al. 2017; Stiennon et al. 2020]

[Fig credit: Nate Lambert]
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Pretraining + RLHF Gains over Pretraining + Finetuning

O
\]

O
o))

O
o

Reference summaries

O
N

Fraction preferred to ref
o
%

O
N

1.3B — 2.7B ~—  6.7B ____ 12.9B
Model size

[Stiennon et al. 2020]



Reward models as safety control and more

The reward model can be used to induce any desired behavior as needed:
* Avoiding bias
* Avoiding responses outside its scope

* Avoiding toxicity
* Produce long form responses
e Write haiku
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GPT3.5 (InstructGPT)

Step 1

Collect demonstration data,
and train a supervised policy.

Step 2

Collect comparison data,
and train a reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

30'( promptis A prompt and A new prompt =
ampled from our - several model e is sampled from :
t k I Explain the moon Explain the moon Write a story
a S S e rompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled. E
- o © | Y
A |abe|er Explain gravity... Explain war... The pollcy B0
0.0
demonstrates the @ G (D) generates N
desired output y; Moot Vimons an output. \.\/52{/
. 4 N J
behavior. Some people went \{ %
to the moon.. A labeler ranks
the outputs from @ Onoe:upon:stime
This data is used e best to worst. 0-0-0-0 '
to fine-tune GPT-3 /}?5{\ The reward model o
with supervised .\.\;2{/. calculates a /.)?5{\
learning. 2 reward for .\\;2(/.
) . . [ J )
This data is used B the output.
BIEE to train our ./}?.;Q\. ‘n,
reward model. = The reward is
0-0-0-0 used to update rk
the policy
[Quyang et al., 2022] using PPO.



GPT3.5 (InstructGPT

PROMPT

COMPLETION

Explain the moon landing to a 6 year old in a few sentences.

GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.

PROMPT

COMPLETION

Write a short poem about a wise frog.

GPT-3
Write a short story in which a character has two different names.

Write a short story in which you try to get something back that you
have lost.

Write a short story in which a character has a bad dream.

InstructGPT

The frog is a symbol of wisdom

He knows all the secrets of the world
He is a master of disguise

And a great teacher of life

He is a symbol of transformation

And the bringer of change

He is the frog who has seen it all
And knows the meaning of it all




Today’s LLMs (including the GPT family)

Large number of parameters parameters + pre-training

offers: _
c Large-scale | del pretraini
) F|uent generatlon Training on code Gl rge-scale language model pretraining
PT-3 Initial Instruction turi
* store a large amount of knowledge ! | T} Instruction tuning

GPT-3 Series Codex Initial ’ InstructGPT Initial

RLHF adds preferences for ~oc |
¢ Generating neutral or safe responses v |
e Avoid tOpiCS outside its knOW|edge scope 1 LM + code training then instruction tuning

l Supervised instruction tuning

RLHF may decrease the model’s in-context ability GPT-3.5 Series
(alignment tax), but improve zero-shot ability R s T RUHF
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Ssummary

RLHF:

— Motivation: supervised fine-tuning unlikely to work for creative generation where there is
no one ground truth.

— Uses 2 models: one for modeling human preferences and another one for generation
— Reward model is trained via ranking ratings from human annotators

RLHF is still a very underexplored and fast-moving area

New models keep getting announced
T _ every month. Some of these are closed
Limitations: . . (the GPT family, Claude, BARD), and some

— RL can be tricky to get right are downloadable (LLaMa, TULU...)

— Training a good reward might require a lot of annotations




