
The impact of scale

1
A lot of this material is based on the ACL 2022 tutorial on Zero- and Few-Shot NLP with Pretrained Language Models by Iz Beltagy, 
Arman Cohan, Robert L. Logan IV, Sewon Min, Sameer Singh
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Models for language have become bigger
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Plot from Microsoft Research blog (Alvi & Kharya 2021)
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More parameters → better performance?
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pathways." arXiv preprint arXiv:2204.02311 (2022).
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13Chowdhery et al. "Palm: Scaling language modeling with 
pathways." arXiv preprint arXiv:2204.02311 (2022).

Especially in the zero- and few-shot setting

Brown et al. "Language models are few-shot learners." Advances 
in neural information processing systems 33 (2020).



What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute

– More compute for model forward and backward passes
– More compute for training iterations also

– Of course, only a large enough model can take advantage of the additional 
training

Think about model capacity
So scaling tends to be associated with larger models
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Scale: Model size × # training tokens

Model name Model size 
(billions of parameters)

Training tokens
 (billions of tokens)

Compute 
(in GPT-3 terms)

GPT-NeoX 20 472 0.18x
GPT3 175 300 1x
Gopher 280 300 1.6x
Chinchilla 67 1,400 1.6x
Megatron-Turing-NLG 530 270 2.7x
PaLM 540 780 8x
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Larger models present new problems

We cannot find the best hyperparameters by training multiple models

We don’t know when to stop training

Given a budget for compute, should we increase the model size or the 
number of training steps using that budget?

Can we develop a theory that connects loss with the model sizes and the 
number of training steps?
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Suppose you have a compute 
budget, what model size should you 
use?

Smaller models don’t have enough 
capacity to use  the extra compute. 
They plateau early

Larger models take longer initially, but 
with more compute get to lower losses

How big should your model be?

21
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z
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Suppose you have a compute 
budget, what model size should you 
use?

Smaller models don’t have enough 
capacity to use  the extra compute. 
They plateau early

Larger models take longer initially, but 
with more compute get to lower losses

PetaFLOP/s-days measures the number of floating point operations

𝐶 PetaFLOP/s-days:
Suppose we have a computer that can perform one PetaFLOP (i.e., 
10!" FLOPs) per second, and it ran for 𝐶 days
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Suppose you have a compute 
budget, what model size should you 
use?

Smaller models don’t have enough 
capacity to use  the extra compute. 
They plateau early

Larger models take longer initially, but 
with more compute get to lower losses

Initially take longer to get 
to the same loss as a 
smaller model

But eventually reach 
a lower loss
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For a given compute, we can ask: What is the 
optimal model size?

Rather than training models to convergence, train 
them to optimality (which occurs earlier)

Extra effort is not worth it because you can 
get a better model for the effort by picking a 
larger model

But to make this choice, we need to know all 
these learning curves. How can we get them 
without training a model? Or when the budget 
only allows training one model?
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For a given compute, we can ask: What is the 
optimal model size?

Rather than training models to convergence, train 
them to optimality (which occurs earlier)

Extra effort is not worth it because you can 
get a better model for the effort by picking a 
larger model

But to make this choice, we need to know all 
these learning curves. How can we get them 
without training a model? Or when the budget 
only allows training one LARGE model?

Optimal model size 
for this compute



Scaling laws
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Kaplan et al. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

The claim: Test loss are power law functions of 
model size and compute

If this were true, then use small models to fit the 
constants of the power law function, and then 
extrapolate to large sizes

Kaplan et al showed empirical support for the 
existence of such power laws

[Kaplan et al 2020]
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excluding token embeddings 
and positional embeddings

Number of training steps

Cross entropy loss of a 
transformer language model of 
size N when trained for S steps

An estimate of the minimal 
number of training steps 
needed to reach the given loss 
(Proportional to the number of 
steps, see paper for details)

Constants estimated by training many small models and fitting the loss as this function of N and S 



The scaling laws seem to be empirically valid
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The setup: Constants estimated by 
training many small, and then 
predict the learning curves of larger 
models

The predicted losses (dotted curves) 
matches the empirical learning 
curves (solid)
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A compute efficient loss frontier: For 
a given amount of compute, what is 
the best loss we can obtain? 

𝐿 ∝ 𝐶!"."$%

For a given amount of compute C

• The optimal model size is 
𝑁./0 ∝ 𝐶".12	

• The optimal number of tokens
𝐷./0 ∝ 𝐶".31

Since the data is so large, there is only one 
epoch. No tokens are ever seen by the 
model twice during training

What do these mean? Let us work out an example
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We can estimate these without having to actually train the model.

GPT-3 used this recipe to train a 175B model on 300B tokens



Subsequent developments

Hoffman et al (2022) noted that the Kaplan results were based on all experiments 
using the same learning rate schedule

– Changing the learning rate schedule so that the learning rate reaches zero at the end of 
training gives different constants in the expression

– Both N and D are equally important
𝑁$%& ∝ 𝐶'.)	, 𝐷$%& ∝ 𝐶'.)

• Implication: If we have more compute, grow number of steps and number of tokens equally

– Trained a 70B model on 1.4T tokens (Chinchilla) outperforming their previous 280B 
model trained on 300B tokens (Gopher)
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Final words

• Scaling laws: Empirical observations that relate model size, compute in FLOPs, 
training size and loss functions. Typically power law relationships

• These are empirical observations. There is very little theoretical understanding

• But why did we not see this coming? Because learning theory does not really 
like overparameterized models
– Learning theory: “Overparameterization = high capacity = low generalization”
– Empirical evidence: Making models bigger makes them generalize better!

Perhaps there is room for new theory. A promising direction involves the so called “double 
descent” curve of Belkin et al 2018.

54


