
The impact of scale

1
A lot of this material is based on the ACL 2022 tutorial on Zero- and Few-Shot NLP with Pretrained Language Models by Iz Beltagy,
Arman Cohan, Robert L. Logan IV, Sewon Min, Sameer Singh

Where are we?

2

Static word embeddings

Word2vec, Glove

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Where are we?

3

Static word embeddings

Recurrent Neural Networks
Word2vec, Glove

LSTMs, GRU, attention

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Where are we?

4

Static word embeddings

Recurrent Neural Networks
Word2vec, Glove

LSTMs, GRU, attention

Self-attention

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Where are we?

5

Static word embeddings

Recurrent Neural Networks

Transformers, fine-tuning

Word2vec, Glove

LSTMs, GRU, attention

Self-attention

Transformers, BERT, GPT, …

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Where are we?

6

Static word embeddings

Recurrent Neural Networks

Transformers, fine-tuning

Large Language Models

Word2vec, Glove

LSTMs, GRU, attention

Self-attention

Transformers, BERT, GPT, …

GPT-2, T5, GPT-3, ChatGPT, …

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

We are here

Models for language have become bigger

7
Plot from Microsoft Research blog (Alvi & Kharya 2021)

Models for language have become bigger

8
Plot from Microsoft Research blog (Alvi & Kharya 2021)

And they have become even bigger
since this plot was made in 2021

Models for language have become bigger

9
Plot from Microsoft Research blog (Alvi & Kharya 2021)

Bigger models ⇒ Training and deployment is expensive

And they have become even bigger
since this plot was made in 2021

10

Bigger models
⇒ Training and deployment is expensive

11

Bigger models
⇒ Training and deployment is expensive

More parameters → better performance?

12Chowdhery et al. "Palm: Scaling language modeling with
pathways." arXiv preprint arXiv:2204.02311 (2022).

Especially in the zero- and few-shot setting

More parameters → better performance?

13Chowdhery et al. "Palm: Scaling language modeling with
pathways." arXiv preprint arXiv:2204.02311 (2022).

Especially in the zero- and few-shot setting

Brown et al. "Language models are few-shot learners." Advances
in neural information processing systems 33 (2020).

What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute

– More compute for model forward and backward passes
– More compute for training iterations also

– Of course, only a large enough model can take advantage of the additional
training

Think about model capacity
So scaling tends to be associated with larger models

14

What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute

– More compute for model forward and backward passes
– More compute for training iterations also

– Of course, only a large enough model can take advantage of the additional
training

Think about model capacity
So scaling tends to be associated with larger models

15

What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute

– More compute for model forward and backward passes
– More compute for training iterations also

– Of course, only a large enough model can take advantage of the additional
training

Think about model capacity
So scaling tends to be associated with larger models

16

What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute

– More compute for model forward and backward passes
– More compute for training iterations also

– Of course, only a large enough model can take advantage of the additional
training

Think about model capacity
So scaling tends to be associated with larger models

17

What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute

– More compute for model forward and backward passes
– More compute for training iterations also

– Of course, only a large enough model can take advantage of the additional
training

Think about model capacity
So scaling tends to be associated with larger models

18

Scale: Model size × # training tokens

Model name Model size
(billions of parameters)

Training tokens
 (billions of tokens)

Compute
(in GPT-3 terms)

GPT-NeoX 20 472 0.18x
GPT3 175 300 1x
Gopher 280 300 1.6x
Chinchilla 67 1,400 1.6x
Megatron-Turing-NLG 530 270 2.7x
PaLM 540 780 8x

19

Larger models present new problems

We cannot find the best hyperparameters by training multiple models

We don’t know when to stop training

Given a budget for compute, should we increase the model size or the
number of training steps using that budget?

Can we develop a theory that connects loss with the model sizes and the
number of training steps?

20

Suppose you have a compute
budget, what model size should you
use?

Smaller models don’t have enough
capacity to use the extra compute.
They plateau early

Larger models take longer initially, but
with more compute get to lower losses

How big should your model be?

21
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

How big should your model be?

22
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

Suppose you have a compute
budget, what model size should you
use?

Smaller models don’t have enough
capacity to use the extra compute.
They plateau early

Larger models take longer initially, but
with more compute get to lower losses

PetaFLOP/s-days measures the number of floating point operations

𝐶 PetaFLOP/s-days:
Suppose we have a computer that can perform one PetaFLOP (i.e.,
10!" FLOPs) per second, and it ran for 𝐶 days

How big should your model be?

23
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

Suppose you have a compute
budget, what model size should you
use?

Smaller models don’t have enough
capacity to use the extra compute.
They plateau early

Larger models take longer initially, but
with more compute get to lower losses

How big should your model be?

24
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

Suppose you have a compute
budget, what model size should you
use?

Smaller models don’t have enough
capacity to use the extra compute.
They plateau early

Larger models take longer initially, but
with more compute get to lower losses

Initially take longer to get
to the same loss as a
smaller model

But eventually reach
a lower loss

How big should your model be?

25
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

For a given compute, we can ask: What is the
optimal model size?

Rather than training models to convergence, train
them to optimality (which occurs earlier)

Extra effort is not worth it because you can
get a better model for the effort by picking a
larger model

But to make this choice, we need to know all
these learning curves. How can we get them
without training a model? Or when the budget
only allows training one model?

How big should your model be?

26
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

For a given compute, we can ask: What is the
optimal model size?

Rather than training models to convergence, train
them to optimality (which occurs earlier)

Extra effort is not worth it because you can
get a better model for the effort by picking a
larger model

But to make this choice, we need to know all
these learning curves. How can we get them
without training a model? Or when the budget
only allows training one model?

Optimal model size
for this compute

How big should your model be?

27
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

For a given compute, we can ask: What is the
optimal model size?

Rather than training models to convergence, train
them to optimality (which occurs earlier)

Extra effort is not worth it because you can
get a better model for the effort by picking a
larger model

But to make this choice, we need to know all
these learning curves. How can we get them
without training a model? Or when the budget
only allows training one model?

Optimal model size
for this compute

How big should your model be?

28
Brown, Tom B., et al. "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165 (2020).z

For a given compute, we can ask: What is the
optimal model size?

Rather than training models to convergence, train
them to optimality (which occurs earlier)

Extra effort is not worth it because you can
get a better model for the effort by picking a
larger model

But to make this choice, we need to know all
these learning curves. How can we get them
without training a model? Or when the budget
only allows training one LARGE model?

Optimal model size
for this compute

Scaling laws

29
Kaplan et al. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

The claim: Test loss are power law functions of
model size and compute

If this were true, then use small models to fit the
constants of the power law function, and then
extrapolate to large sizes

Kaplan et al showed empirical support for the
existence of such power laws

[Kaplan et al 2020]

Scaling laws

30
Kaplan et al. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

The claim: Test loss are power law functions of
model size and compute

If this were true, then use small models to fit the
constants of the power law function, and then
extrapolate to large sizes

Kaplan et al showed empirical support for the
existence of such power laws

[Kaplan et al 2020]

Scaling laws

31
Kaplan et al. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

The claim: Test loss are power law functions of
model size and compute

If this were true, then use small models to fit the
constants of the power law function, and then
extrapolate to large sizes

Kaplan et al showed empirical support for the
existence of such power laws

[Kaplan et al 2020]

Scaling law according to Kaplan et al

𝐿 𝑁, 𝑆 =
𝑁!
𝑁

"!
+

𝑆#
𝑆$%& 𝑆

""

32

Scaling law according to Kaplan et al

𝐿 𝑁, 𝑆 =
𝑁!
𝑁

"!
+

𝑆#
𝑆$%& 𝑆

""

33

Number of model parameters
excluding token embeddings
and positional embeddings

Scaling law according to Kaplan et al

𝐿 𝑁, 𝑆 =
𝑁!
𝑁

"!
+

𝑆#
𝑆$%& 𝑆

""

34

Number of model parameters
excluding token embeddings
and positional embeddings

Number of training steps

Scaling law according to Kaplan et al

𝐿 𝑁, 𝑆 =
𝑁!
𝑁

"!
+

𝑆#
𝑆$%& 𝑆

""

35

Number of model parameters
excluding token embeddings
and positional embeddings

Number of training steps

Cross entropy loss of a
transformer language model of
size N when trained for S steps

Scaling law according to Kaplan et al

𝐿 𝑁, 𝑆 =
𝑁!
𝑁

"!
+

𝑆#
𝑆$%& 𝑆

""

36

Number of model parameters
excluding token embeddings
and positional embeddings

Number of training steps

Cross entropy loss of a
transformer language model of
size N when trained for S steps

An estimate of the minimal
number of training steps
needed to reach the given loss
(Proportional to the number of
steps, see paper for details)

Scaling law according to Kaplan et al

𝐿 𝑁, 𝑆 =
𝑁!
𝑁

"!
+

𝑆#
𝑆$%& 𝑆

""

37

Number of model parameters
excluding token embeddings
and positional embeddings

Number of training steps

Cross entropy loss of a
transformer language model of
size N when trained for S steps

An estimate of the minimal
number of training steps
needed to reach the given loss
(Proportional to the number of
steps, see paper for details)

Constants estimated by training many small models and fitting the loss as this function of N and S

The scaling laws seem to be empirically valid

38

The setup: Constants estimated by
training many small, and then
predict the learning curves of larger
models

The predicted losses (dotted curves)
matches the empirical learning
curves (solid)

More empirical observations

39

A compute efficient loss frontier: For
a given amount of compute, what is
the best loss we can obtain?

𝐿 ∝ 𝐶!"."$%

More empirical observations

40

A compute efficient loss frontier: For
a given amount of compute, what is
the best loss we can obtain?

𝐿 ∝ 𝐶!"."$%

For a given amount of compute C

• The optimal model size is
𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

More empirical observations

41

A compute efficient loss frontier: For
a given amount of compute, what is
the best loss we can obtain?

𝐿 ∝ 𝐶!"."$%

For a given amount of compute C

• The optimal model size is
𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

More empirical observations

42

A compute efficient loss frontier: For
a given amount of compute, what is
the best loss we can obtain?

𝐿 ∝ 𝐶!"."$%

For a given amount of compute C

• The optimal model size is
𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

Since the data is so large, there is only one
epoch. No tokens are ever seen by the
model twice during training

More empirical observations

43

A compute efficient loss frontier: For
a given amount of compute, what is
the best loss we can obtain?

𝐿 ∝ 𝐶!"."$%

For a given amount of compute C

• The optimal model size is
𝑁./0 ∝ 𝐶".12	

• The optimal number of tokens
𝐷./0 ∝ 𝐶".31

Since the data is so large, there is only one
epoch. No tokens are ever seen by the
model twice during training

What do these mean? Let us work out an example

With more compute, should you increase model size or
number of tokens?

44

Kaplan et al: For a given amount
of compute C

• The optimal model size is
𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

With more compute, should you increase model size or
number of tokens?

45

Kaplan et al: For a given amount
of compute C

• The optimal model size is
old	𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
old	𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

Suppose we have access to 100x more compute.

• new 𝑁𝑜𝑝𝑡 ∝ 100𝐶 0.73	

• new 𝐷𝑜𝑝𝑡 ∝ 100𝐶 0.27	

With more compute, should you increase model size or
number of tokens?

46

Kaplan et al: For a given amount
of compute C

• The optimal model size is
old	𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
old	𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

Suppose we have access to 100x more compute.

• new 𝑁𝑜𝑝𝑡 ∝ 100𝐶 0.73	

• new 𝐷𝑜𝑝𝑡 ∝ 100𝐶 0.27	

new	𝑁./0
old	𝑁./0

=
100𝐶 ".12

𝐶".12 = 100".12 ≈ 28.8

With more compute, should you increase model size or
number of tokens?

47

Kaplan et al: For a given amount
of compute C

• The optimal model size is
old	𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
old	𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

Suppose we have access to 100x more compute.

• new 𝑁𝑜𝑝𝑡 ∝ 100𝐶 0.73	

• new 𝐷𝑜𝑝𝑡 ∝ 100𝐶 0.27	

new	𝑁./0
old	𝑁./0

=
100𝐶 ".12

𝐶".12 = 100".12 ≈ 28.8

new	𝐷./0
old	𝐷./0

=
100𝐶 ".31

𝐶".31
= 100".31 ≈ 3.47

With more compute, should you increase model size or
number of tokens?

48

Kaplan et al: For a given amount
of compute C

• The optimal model size is
old	𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
old	𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

Suppose we have access to 100x more compute.

• new 𝑁𝑜𝑝𝑡 ∝ 100𝐶 0.73	

• new 𝐷𝑜𝑝𝑡 ∝ 100𝐶 0.27	

new	𝑁./0
old	𝑁./0

=
100𝐶 ".12

𝐶".12 = 100".12 ≈ 28.8

new	𝐷./0
old	𝐷./0

=
100𝐶 ".31

𝐶".31
= 100".31 ≈ 3.47

Increase the number of training steps by ~29x and the number of tokens seen during training only by 3.5x
We can estimate these without having to actually train the model.

With more compute, should you increase model size or
number of tokens?

49

Kaplan et al: For a given amount
of compute C

• The optimal model size is
old	𝑁𝑜𝑝𝑡 ∝ 𝐶0.73	

• The optimal number of tokens
old	𝐷𝑜𝑝𝑡 ∝ 𝐶0.27

Suppose we have access to 100x more compute.

• new 𝑁𝑜𝑝𝑡 ∝ 100𝐶 0.73	

• new 𝐷𝑜𝑝𝑡 ∝ 100𝐶 0.27	

new	𝑁./0
old	𝑁./0

=
100𝐶 ".12

𝐶".12 = 100".12 ≈ 28.8

new	𝐷./0
old	𝐷./0

=
100𝐶 ".31

𝐶".31
= 100".31 ≈ 3.47

Increase the number of training steps by ~29x and the number of tokens seen during training only by 3.5x
We can estimate these without having to actually train the model.

GPT-3 used this recipe to train a 175B model on 300B tokens

Subsequent developments

Hoffman et al (2022) noted that the Kaplan results were based on all experiments
using the same learning rate schedule

– Changing the learning rate schedule so that the learning rate reaches zero at the end of
training gives different constants in the expression

– Both N and D are equally important
𝑁$%& ∝ 𝐶'.)	, 𝐷$%& ∝ 𝐶'.)

• Implication: If we have more compute, grow number of steps and number of tokens equally

– Trained a 70B model on 1.4T tokens (Chinchilla) outperforming their previous 280B
model trained on 300B tokens (Gopher)

50

Subsequent developments

Hoffman et al (2022) noted that the Kaplan results were based on all experiments
using the same learning rate schedule

– Changing the learning rate schedule so that the learning rate reaches zero at the end of
training gives different constants in the expression

– Both N and D are equally important
𝑁$%& ∝ 𝐶'.)	, 𝐷$%& ∝ 𝐶'.)

• Implication: If we have more compute, grow number of steps and number of tokens equally

– Trained a 70B model on 1.4T tokens (Chinchilla) outperforming their previous 280B
model trained on 300B tokens (Gopher)

51

Subsequent developments

Hoffman et al (2022) noted that the Kaplan results were based on all experiments
using the same learning rate schedule

– Changing the learning rate schedule so that the learning rate reaches zero at the end of
training gives different constants in the expression

– Both N and D are equally important
𝑁$%& ∝ 𝐶'.)	, 𝐷$%& ∝ 𝐶'.)

• Implication: If we have more compute, grow number of steps and number of tokens equally

– Trained a 70B model on 1.4T tokens (Chinchilla) outperforming their previous 280B
model trained on 300B tokens (Gopher)

52

Subsequent developments

Hoffman et al (2022) noted that the Kaplan results were based on all experiments
using the same learning rate schedule

– Changing the learning rate schedule so that the learning rate reaches zero at the end of
training gives different constants in the expression

– Both N and D are equally important
𝑁$%& ∝ 𝐶'.)	, 𝐷$%& ∝ 𝐶'.)

• Implication: If we have more compute, grow number of steps and number of tokens equally

– Trained a 70B model on 1.4T tokens (Chinchilla) outperforming their previous 280B
model trained on 300B tokens (Gopher)

53

Final words

• Scaling laws: Empirical observations that relate model size, compute in FLOPs,
training size and loss functions. Typically power law relationships

• These are empirical observations. There is very little theoretical understanding

• But why did we not see this coming? Because learning theory does not really
like overparameterized models
– Learning theory: “Overparameterization = high capacity = low generalization”
– Empirical evidence: Making models bigger makes them generalize better!

Perhaps there is room for new theory. A promising direction involves the so called “double
descent” curve of Belkin et al 2018.

54

